

TV TUNER SERVICE

ELECTRONICS, INC.

also available in...

WASHINGTON. D.C. KANSAS CITY

 MInnerpolis. St. PAUL new orleans PORTLAND, OR. OKLAHOMA CITY HOUSTON BUFFPLO
now yoll too... ... Vel Fl Fast $8 \mathrm{hr.Service!}$

$\$ 9^{95}$

1 Year Guarantee

ALL PTS BRANCHES are wholly owned subsidiaries of PTS ELECTRONICS, INC: (NO FRANCHISES!) and report directly to the Home Office in Bloomington, Indiana. Only this way can we guarantee the same quality--PRECISION TUNER SERVICE-that made PTS the leader in this field. PTS is proud to be the only tuner service to publish a TUNER REPLACEMENT PARTS CATALOG (80 pages of tuner blow-ups, tuner-antenna coil-and shaft replacement guides available for $\$ 1.00$).

WE OFFER MORE. SERVICE IS EVERYTHING WITH US. WE ARE DYNAMIC AND FAST. TRUSTWORTHY.

YOU AND US-A TRUE PARTNERSHIP.

for finer, faster,
Precision

Color - Black \& White - Transistor - Tubes • Varactor • Detent UHF All Makes
VHF, UHF or FM \$ 9.95
UV-COMBO 16.95
IF-SUBCHASSIS 12.50
Major parts and shipping charged at cost.
(Dealer net!)
over 4000 exact tuner replacements available for $\$ 14.95$ up (new or rebuilt)

Send faulty unit with tubes, shields and all broken parts to

Here's everything you'd expect from a high-priced signal generator.
 Except a high price.

The accuracy of your tests depends on your signal generator. But you needn't pay high prices for accuracy $B \& K$ is proud to introduce our Model 2050 Solid-State RF Signal Generator, with features other companies charge more for. Just look at our specs: 100% Solid-State Silicon Circuitry featuring FET's in RF and audio
oscillator stages for greater stability and linearity. Six bands, with ranges from 100 kHz to 30 MHz with 1.5% accuracy. 3 outputs: RF, modulated RF (400 Hz) and externally modulated RF. A big multi-colored, $4 \frac{1}{2 \prime} 2^{\prime \prime}$ vernier dial, with positive antibacklash dial drive. Zenerregulated and internal fuseprotected power supply.

You needn't pay high prices for versatility, ruggedness and accuracy in a signal generatornow there's the Model 2050. It's just what you'd expect from $B \& K$.

Contact your distributor for full information, or write Dynascan Corporation.

$\$ 9995$

$B[\square]$ Very good equipment at a very good price.
Product of Dynascan Corporation/1801 W. Belle Plaine Ave., Chicago, IIf. 60613

FOR MEN WITH IDEAS IN ELECTRONICS

TELEVISION

33 Heathkit's New Digital Color TV
Digital design techniques produce unique circuits found in no other set. by Larry Steckler

57 Simple Scope Servicing
62 Step-By-Step Troubleshooting
Misalignment can cause smear in the picture.
by Stan Prentiss
71 Service Clinic
Aristotle and the big bottle. by Jack Darr
72 Readers Questions
R-E's Service Editor solves reader problems.

SOLID-STATE

 ELECTRONICS45 All About IC Gyrators
Simulated inductor works without coils.by Steve Leckerts

48A IC's For Electronic Music
Using IC's to design and ease construction
by Don Lancaster

48E What Is A ROM?
Read-Only-Memories: what they are and how to use them. by Don Lancaster

69 Replacement Transistor Guide
Two more pages of replacement transistors to add to your notebook. compiled by Robert \& Elizabeth Scott

BUILD THIS ONE

59 Improved Keyboard Encoder
Simpler way to add ASCII code to a keyboard. Use it with TV Typewriter. by Don Lancaster

4 Looking Ahead
Tomorrow's needs today. by David Lachenbruch
24 Equipment Report
Oneida Instant-Weld Cement

24 Appliance Clinic
Limit switches. by Jack Darr
CB Casebook

AUDIO
HI-FI
STEREO
14 Equipment Report
BSR Metrotec FEW-1 Graphic Stereo Equalizer
42 CD4 - The Problems and the Promise

R-E looks at the good and the bad of discrete four-channel records. by Len Feldman

DEPARTMENTS	93	Books	82	New Products
	16	Letters	58	Noteworthy Circuits
	6	New \& Timely	91	Next Month
	90	New Literature	113	Reader Service

RECTANGULAR WAVE GENERATOR made from a single $I C$. is one way to create electronic music.
... see page 48A

Hugo Gernsback (1884-1967)

 founderM. Hanvey Gernsback, editor-in-chief and publisher
Larry Steckler, CET, editor
Robert F. Scott, W2PWG, CET, technical editor
Jack Darr, CET, service editor

1. Queen, editorial associate

Leonard Feldman, contributing high-fidelity editor
David Lachenbruch, contributing editor
Barbara Schwartz, editorial assistant
Vincent P. Cicenia, production manager
Sarah Martin, production assistant
Harriet I. Matysko, circulation director
Arline R. Fishman, advertising coordinator
Radio-Electronics is indexed in Applied Science \& Technology Index ""... and Readers Guide to Periodical Literature

Radio-Electronics, February 1974, Vol. 45, No. 2. Pub lished monthly by Gernsback Publications, Inc., 200 Park Avenue South, New York City 10003. Second-class postage paid at New York, N. Y. and additional mailing office One-year subscription rate U.S.A., U.S possessions and Canada. \$7. Pan-American countries, \$8 Other countries, $\$ 8.50$. Single copies 60 c . 1974 by Gernsback Publications, Inc. All rights reserved. Printed in U.S.A.
Subscription Service: Mail all subscription orders, changes, correspondence and Postmaster Notices of undelivered copies (Form 3579) to Radio-Electronics Subscription Service, Boulder, Colo 80302

A stamped self-addressed envelopemust accompany all submitted manuscripts and/or artworkor photographs if their relurn is desired should they be rejected. We dis claim any responsibility for the loss or damage of man
uscripts and/or artwork or photographs while in our possession or otherwise.

looking ahead

Globalelectronics

Singapore-Once upon a time, you could tell where an electronic product was made by the tradename it bore. An American-brand item was made in the U.S. and a Japanese one was made in Japan. Today, an American stereo may have been made in Taiwan or Hong Kong and a Japanese TV set might have been born in the good old U.S.A.

American producers first moved plants to overseas havens to compete with the low wages paid by Japanese manufacturers. With the rapid rise in the Japanese economy, its inflation and revaluations, Japanese manufacturers have increasingly relocated plant facilities outside of Japan, some of them-such as Panasonic, Sony and Hitachi -building factories in the United States to compete with American manufacturers who were producing in Taiwan to compete with Japanese manufacturers.

No matter how roundabout it may seem, electronics manufacturers have now gone almost completely global. Japanese, American and European makers now have plants concentrated in Taiwan, Hong Kong, Singapore, Malaysia, South Korea and the Philippines as well as in their own home bases. Here on this small island of Singapore, for example. General Electric is making radios for the U.S. market as well as circuit modules for its color and monochrome TV sets. Dutch Philips is manufacturing radios, televisions and cassette recorders here for the world market. HewlettPackard is turning out its sophisticated pocket scientific and business calculators. Texas Instruments, Fairchild and National Semiconductor are making IC's and other semiconductors, Just to the north, in Malaysia, many Japanese manufacturers are making components. In Taiwan, Admiral, Motorola, Philco, RCA and Zenith have consumer electronics plants,
as well as such major Japanese names as Toshiba and Hitachi.

In radio, brand names tend to get all mixed up. Sylvania has quit the radio business, right? In the U.S., that's true. But Sylvania Far East Ltd. in Hong Kong is stamping out radios as fast as it can-and they're labeled with such names as RCA, Zenith, Soundesign, Lloyd, Juliette, Realtone and Lafayette.

Black-and-white TV no longer comes mostly from the U.S. and Japan. In the third quarter of 1973 , about $731 / 2 \%$ of all monochrome sets sold in the U.S. were imports, although most of them bore American brandnames. And the majority of those with Japanese names came from countries other than Japan. Even in Japan, Japanese sets have been priced out of the market, and-like Mr. Jones in America-Mr. Suzuki in Japan is somewhat shocked to discover that his new monochrome set is marked "made in Taiwan.'

Uniform audio standards

Expected momentarily is a government rule prescribing standards for audio power claims in advertising, which should-theoretically, at least-make it simple for a prospective purchaser to compare different brands and models. Subject to minor modifications, the Federal Trade Commission's new standards (which will apply whenever an ad makes claims for power output, frequency response, distortion or other power amplification qualities) will require advertisers to give the following information: (1) The rated minimum sine-wave continuous rms power output in watts per channel. (2) Load impedence, in ohms, for which the equipment is designed. (3) The rated frequency response. (4) The rated percentage of maximum total harmonic distortion at any power level from one fourth of a watt to the full
rated power output.
Just to make certain that all manufacturers are speaking the same technical language, the FTC is expected to prescribe these test conditions: (1) Power-line voltage of 117 ac (rms), using a sinusoidal wave with less than 2% harmonic content, at $60-\mathrm{Hz}$ frequency. (2) The amplifier is to be preconditioned by operating all channels simultaneously at one-third of the rated power output for one hour using a $1,000-\mathrm{Hz}$. sinusoidal wave. (3) All precoditioning and testing is to be conducted in still air at $77^{\circ} \mathrm{F}$. (4) Input signals are to be applied continually at the auxiliary or phono input for at least five minutes at all frequencies with in the rated power band.

In anticipation of the government ruling, many stereo equipment manufacturers during the last year have changed their claims to conform with these requirements. Thus the amplifier "horsepower race" has been considerably toned down; a fourchannel amplifier which once could be described as having 250 watts "peak music power" (whatever that is) might now be reduced to something like 35 watts RMS per channel

'Poor man's satellite'

That's what Westinghouse calls its novel new longdistance TV-communications system, now being tested over Freeport, Bahamas. Project is still hush-hush, but it's learned th at transmissions are dispersed from a helium-filled baloon 10,000 to 15,000 feet above ground, secured to earth by a $5 / 8$-inch line. The system, known as "Tethered Communications" (TCOM for short) uses gyro-stabilized directional antennas, picking up signals from Florida television stations and rebroadcasting them to the Bah amas. The system can receive TV signals from a distance of about 150 miles, covering a 125 -mile radius with its rebroadcasts. The balloon is said to be able to lift a 3,500 -pound load, withstand winds of higher
than 100 miles an hour. In the current experiment, power is supplied by a gasoline generator at the balloon, with a spare balloon standing by for use while the other is being refueled. Future experiments will involve power sent from the ground via an ac line.

The system is designed principally for developing countries and the first order has been placed by the government of South Korea.

Cable TV's growth

One out of every eight

 American TV-equipped homes now receives its programming by cable, according to the annual CATV census made by the authoritative Television Factbook. As of midyear 1973. some 7.800,000 U.S. homes were tied in with 3,032 cable systems, an increase of $1,300.000$ cable subscribers since Jan. 1, 1972. The average cable system has 2,723 subscribers, but the nation's largest system-in San Diego- connects more than 75,000 homes. Some 768 systems originate their own live, film or taped programming, in addition to relaying programs off-the-air. Another 1.000 carry "automatic originations" -news ticker readout, time, weather, stock market quotations, etc. Ten years ago there were 1,000 systems serving fewer than a million families.Noble experiment
With the introduction of RCA's 1975 TV line, it will end a $3^{1 / 2}$-year-old program which permitted owners to take their sets to any technician for warranty repairs. In the future; the company will pay for service only by authorized RCA 'Purchaser Satisfaction Centers." Reason given: To protect customers from being victimized by "some firms whose competence is questionable.'
by DAVID LACHENBRUCH
CONTRIBUTING EDITOR

a cost breakthrough in distribution amplifier design!

Winegard's engineers have done themselves proud with this onean amplifier that does the job at $2 / 3$ the cost of competition*-and more importantly, without sacrificing all these important features:

[^0]*Ask your distributor for full specs and prices or write direct.

WINEGARD
TELEVISION SYSTEMS

Winegard Company
3000 Kirkwood Street
Burlington, lowa 52601

new etimely

The cassette- 10 years old

Philips celebrated the tenth birthday of the cassette tape recorder and player in late 1973, ten years after the first machine-the EL 3300-was introduced at the Berlin Radio Fair.

Just another tape machine at the time-albeit probably the smallest one to that date-the cassette has now become the standard. Recordings made on it can be sent anywhere with the assurance that the recipient will probably have a device to play them back on-something that was by no means the case ten years ago.

Why did the cassette take over? It was not the first machine-cartridge recorders dated back to the days of wire-and (let's face it) quality was not startlingly high compared to reel-to-reel machines of that time. Part of the reason was the compactness, convenience, and the

rapidly increasing audio quality over the first year or two. The other part was the decision by Philips not to license the machine, but to give the idea away to anyone who would agree to manufacture recorder-players that would meet the standards set up by Philips. Thus the research and engineering achievements of the developer were put at the disposal of all manufacturers, and a decisive step toward standardization was made.

New research and new techniques have kept the cassette in the forefront of progress during the decade. Dynamic noise limiters make it more useful for recording in circumstances where incoming sound cannot be controlled; new types of tape have made high-fidelity recording possible. Pre-recorded tapes-Musicassettes

-have appeared in a wide range of subjects and languages, and there is even -in Switzerland-an audio-visual magazine with the pictures printed on paper and the words on cassette

REACT approves 224-225 MHz CB-wants emergency channel in band

Replying to an FCC request for comments, REACT, a voluntary organization of Citizens Band Operators for Emergency Communication, "heartily favors the allocation of additional spectrum for the purpose for which the Citizens Band was established originally, and therefore "favors the assignment of 224 to 225 MHz for 40 additional channels for a new Citizens Radio Service, " a proposal which was the subject of an FCC hearing.

REACT is an organization of some 40,000 Citizens Banders divided in to 800 teams throughout the country. They maintain a watch (an ear) on channel 9 of the Citizens Band, respond to emergency calls, provide two-way communications in local emergencies, and often offer direct physical assistance and take part in action to alleviate or avert effects of emergencies

The communication to the FCC was the result of a mail canvass of the organization's 800 teams. A number of questions were asked, and among those replying, 93 per cent felt that a new additional emergency channel, similar to the present channel 9, be set aside for emergency communication on the proposed new band. More than 60% of the responding members favor automatic transmitter identification as an aid in enforcing proper on-the-air conduct and as a deterrent to illegal operation. As a further deterrent, REACT members favored licensing at point of sale. They also favor FM for the proposed new band, and use of repeater stations.

Signed by Henry B. Kreer, national di-
rector, and Gerald H. Reese, managing director of REACT, the comments conclude: "We view the allocation of this new Class E service as a progressive and justifiable recognition by the Commission of the right of individuals to utilize the radio spectrum, a natural resource, for individual, personal, and business communications.

Cool alternator spins at 100,000 rpm

A new record for low-temperature operation has been set by a miniature turbine-alternator, tested for three hours at $9.8^{\circ} \mathrm{K}\left(-442^{\circ} \mathrm{F}\right)$ at the General Electric Research and Development Center, Schenectady, N.Y. Rotating at 100,000 rpm throughout the test, it produced 13.2 watts.

The unit is a critical component in a super cold refrigerator th at could be used for chilling superconducting motors and generators for ship or magneticallylevitated train propulsion, or for ac power generation

The device is driven by helium gas and runs on frictionless helium-gas bearings.

SUPERCOLD TURBINE-ALTERNATOR spins at only 18 degrees (F) above absolute zero. Designer Duard B. Colyer of GE is seen in rear.

Optical fibers come of age -have

 their own U.S. laboratoryA new United States laboratory aimed solely at the development of optical fibers was announced last October at Roanoke, Va., by the Electro-Optical Products division of ITT. Division President John F. (comtinued on page 12)

Save time and money by joining the
 Electronics and Control Engineers' Book Club

H[ERE is a professional club designed specifically to meet your in your field on a regular basis at below publisher prices.

How the Club operates: Basic to the Club's service is its publication, the Electronics and Control Engineers' Book Club Bulletin, which brings you news of books in your field. Sent to members without cost, it announces and describes in detail the Club's featured book of the month as well as alternate selections which are available at special member's' prices.

When you want to examine the Club's feature of the month, you do nothing. The book will be mailed to you as a regular part of your Club service. If you prefer one of the alternate selec-tions-or if you want no book at all for that month-you notify the Club by returning the convenient card enclosed with each Bulletin.

As a Club nember, you agree only to the purchase of four books over a two-year period. Considering the many books published annually in your field, there will surely be at least four that you would want to own anyway. By joining the Club, you save both money and the trouble of searching for the best books.

MAIL THIS COUPON TODAY

ELECTRONICS AND CONTROL ENGINEERS' BOOK CLUB 582 Princeton Road. Hightstown, N.J. 08520

Please enroll me as a member of the Electronics and Control Engineers' Book Club and send me the two books indicated below. I am to receive the bonus for just $\$ 1.00$, and my first selection at the special Club price shown. These books are to be shipped on approval, and I may return them both without cost or further obligation If I decide to keep the books, I agree to purchase as few as four books during the next two years at special Club prices (at least 15% below list).

Write Code No. of
bonus book here

Write Code No. of
first selection here

State Zip E33238

Discover the ease and excitement of learning Electronics with programmed equipment

 NRI Sends you When you train at home with NRI, you train with your hands as well as your head. You learn the WHY of Electronics, Communications, TV-Radio the NRI pioneering "3-Dimensional" way. NRI training is the result of more than half a century of simplifying, organizing, dramatizing subject matter, and providing personal services unique for a home study school. You get the kind of technical training that gives you priceless confidence as you gain experience equal to many, many months of training on the job.NRI-The Leader in Electronics Training for more than Fifty Years

Earn $\$ 5$ to $\$ 7$ an hour spare or full time in

TV-RADIO SERVICING

Color television sales are soaring. And so is the demand for trained repairmen. If you can service TV sets, portable radios, tape recorders, hi-fi sets, phonographs and auto radios, you'll always be in demand. It's one of your best routes to sparetime earnings, a good paying job or a business of your own. NRI trains you quickly and expertly, showing you how to get started in servicing soon after you enroll, earning as you learn. NRI trains you in today's method of installing and repairing all electronic equipment for the home -including solid state Color TV. You even build, experiment with and keep to enjoy your own solid-state radio plus your choice of black-andwhite or the new $25^{\prime \prime}$ diagonal solid state Color TV receiver NRI developed from the chassis up for training. Like thousands of others, you can soon be earning good money in your spare time ... the easy NRI way.

There's money and success awaiting you in COMMUNICATIONS mOBILE RADIO \& BROADCASTING

NRI training in Complete Communications equals as much as two years of training on the job. With NRI, you can train for a choice of careers ranging from mobile, marine and aviation radio to TV broadcasting and space communications. You learn how to install, maintain and operate today's remarkable transmitting and receiving equipment by actually doing it. You build and experiment with test equipment, like a TVOM you keep. You build and operate amplifier circuits, transmission line and antenna systems, even build and use a phone-cw transmitter suitable for transmission on the 80 -meter amateur band. Whichever of these five intensely practical NRI Communications courses you choose, you prepare for your FCC License exams, and you must pass your FCC exams or NRI refunds your tuition in full.

Move ahead in America's fast growing industry as

COMPUTER TECHNICIAN

Ours is rapidly becoming the age of the computer ... and NRI can train you to cash in on the opportunities in this field. Only NRI trains you at home on a real computer-not a simple logic trainer, but a complete, stored program digital computer using over 50 integrated circuits. As you build the NRI Computer, you explore all fundamental logic circuits, then how to combine them in a complete, stored program computer. You observe the "heart" of a real computer. You solve typical problems and learn how to locate faults with diagnostic programs. Bite-size texts make studying easier. Prove to yourself what nearly a million NRI students could tell youthat you get more for your money from NRI. Check the card and mail it today for your free NRI Color Catalog. NO SALESMAN WILL CALL. NRI Training, 3939 Wisconsin Ave., Washington, D.C. 20016.

YOU GET MORE FOR YOUR MONEY FROM NRI

NRI Kits and Equipment

Dollar for dollar, you get more value from NRI training kits, because they are designed as educational tools. In the TV-Radio Servicing Course, for instance, the end product is a superb $25^{\prime \prime}$ diagonal color TV your whole family will enjoy. The set is designed so that, while building it, you can introduce and correct defects . . . for trouble-shooting and hands-on experience in circuitry and servicing. The kits include, at no additional cost, a wide-band service type oscilloscope and color crosshatch generator, and other valuable equipment that will let you start earning money in your spare time making repairs . . . even before the course is completed.

new etimely

Johnson stated th at 25 to 30 specialists would immediately initiate work in the United States on a transmission system invented in 1965 by an ITT scientist, Dr. Charles Kao, in a British laboratory.

By the 1980's, Mr. Johnson said much of the world's communications will be carried on optical fibers. As better fibers, lasers, and receivers are developed, he predicted, it will become possible to carry millions of voice channels or thousands of TV programs on a single beam. ITT has already-in 1971-demonstrated a model system with a capacity of 1,400 simultaneous voices on 17 simultaneous picturephone conversations.

STUDY PROGRAM INVESTIGATES the possibility of obtaining direct-current energy from solar cells on a satellite in position high above the earth and oriented to be in continuous sunlight. The dc would be converted to microwave energy and beamed to earth where giant arrays like the one in the photograph would receive the energy and convert it to usable electric power. Not at present economically competitive with present generating systems, the technique would have the advantage of not depleting fuel resources and would be pollution-free. In the photograph, scientist William C. Brown of Raytheon adjusts an antenna and diode in the receiving array.

Largest solid-state image sensor uses charge-coupling technique

A silicon chip about as big as a nickel is hailed as 'a key milestone in the creation of a new generation of tubeless cameras." The sensor, a charge-coupled device (CCD), contains over 120,000 elements.

Not large from a layman's point of view,
the nickel-size device was called a "key achievement" by Dr. Karl H . Zaininger of the RCA Laboratories, where it was developed. "Manufacturable CCD sensors of at least this size are essential if all-solid-state TV cameras are to have the resolution to satisfy a broad range of applications," he said, going on to state that TV cameras with CCD's could be made the size of a cigarette package or smaller. Such cameras would be especially useful in space exploration, military programs, surveillance systems, and a number of other applications requiring small dimensions or low weight.

J. E. Smith, founder of NRI dies at age 92

James Ernest (J.E.) Smith, of National Radio Institute, since 1914 one of the nation's foremost educators of radiomen, died at his Washington home September 30, 1973.

A native of New Hampshire, Mr. Smith was a graduate of the Worcester (Mass.) Polytechnic Institute. He went to Washington in 1907 as an electrical engineering instructor at McKinley High School, introducing wireless instruction in his courses. During World War l, he
was director of radio instruction at Howard University, training radiomen for wartime service.

He founded the National Radio Institute, the country's and probably the world's first home study electronics school, in 1914 in a Washington bank building. During its 60 years of existence, it is said to have enrolled nearly a million students. Acting as president of the school till 1956, he then became chairman of the board. He retired in 1968, when the Institute was acquired by McGraw-Hill Co. and became part of its continuing education center

Mr. Smith was a former chairman of the advisory board of the metropolitan Washington YMCA and president of the Round Table of Washington. He was a life member of the Radio Club of America (joining in 1930) and a life member of the IEEE. Among the numerous awards he received was the Robert H. Goddard Award for Outstanding Professional Achievement, the National Home Study Council Hall of Fame, the International Knight of Achievement award, a doctorate from the Worcester Polytechnic Institute, and several honorary degrees. R-E

Radlo-Electronics is published by Gernsback Publications, Inc. 200 Park Ave. S. New York, N.Y. 10003 (212) 777-6400 President: M. Harvey Gernsback Secretary: Bertina Baer

ADVERTISING SALES

EAST
Stanley Levitan, Eastern Sales Mgr.
Radio-Electronics
200 Park Ave. South
New York, N.Y. 10003
(212) 777-6400

MIDWEST/Texas/Arkansas/Okla.
Ralph J. Bergen
The Ralph J. Bergen Co.
6319 N. Central Ave.
Chicago, III. 60646
(312) 792-3646

PACIFIC COAST/Mountain States
Jay Eisenberg
J.E. Publishers Representative Co. 8732 Sunset Blvd., 4th Floor
Los Angeles, Calif 90069
(213) 659-3810

420 Market St.,
San Francisco, Calif. 94111
(415) 981-4527

SOUTHEAST

E. Lucian Neff Associates

25 Castle Harbor Isle,
Fort Lauderdale, Florida 33308
(305) 566-5656

MOVING?

Don't miss a single copy of Radio-Electronics. Give | us:
Us:
Six weeks' no-
tice
Your old ad-
dress and zip
code
Your new ad
dress and zip
code
name (please print)
address

city	state	zip code
Mail to: Radio-Electronics		
SUBSCRIPTIONDEPT., BOULDER, COLO. 80302		

THE SONY SOUND LAB

Even if you can't afford it, you should know about it.

Knowing about a system like this gives you more than just a hook to hang your dreams on It's also a benchmark that the system you have (or the one you plan to buy) can be measured against

It exists because engineers dream, too. And because, at Sony, they turn their dreams into reality.

One dreamed of a turntable whose mechanical performance would approach an electronic circuit's level of perfection. The result was the PS-2251, in which electronic circuits perform the formerly mechanical functions of speed selection, speed regulation and pitch control. The single moving part...the turntable/servomotor assembly.

Other Sony engineers wouldn't settie for anything less than a tuner with
absolute interference rejection. So they added to an already interference-free tuner, a circuit that could cut through even the most persistentimpulse noises of men and machines.

More dreams: A preamplifier with the control flexibility of nearly 2,000 precisely repeatable response settings and precisely 42 levers, meters, knobs and jacks. A quadraphonic decoder with dual logic circuits that can make your system realize the full potential of four channel SQ discs and FM broadcasts, with decoder circuits for other matrix recordings, and a full complement of quadraphonic monitoring and control facilities. Plus power amplifiers so clean that they approach the maximum dynamic range of a live symphony orchestra while delivering 100 contin-
uous watts of power per channel at all trequencies from 20 to $20,000 \mathrm{~Hz}$, with less than 0.1% distortion.

Dreams, once. Realities, todav.
And new realities to come. For after the dream levels of performance are achieved, our engineers re-scale their visions, asking: "What if we could adapt these new techniques, approach these levels of performance and sophistication in less costly equipment?

Some of the answers are on your Sony dealer's shelf already.

The complete Sony Sound Lab described above sells for $\$ 2.217 .00$: PS-2251L/A turntable, $\$ 299.50$; ST-5130 tuner. $\$ 369.50$; TA-2000F preamplifier, $\$ 579.50$: SQD-2020 futt logic SQ decoder, $\$ 229.50$; (2) TA-3200F stereo amplifiers. $\$ 369.50$ each. All prices suggested retail.

Sony Corporation of America, 9 West 57 th Street. New York. N.Y. 10019.

SONY

SAFE! Grooved Guide positions wire for proper staple envelopment! Grooved Driving Blade stops staple at right depth of penetration to prevent cutting into wire or cable insulation!

No. T-25—Fits wires up to $1 / 4^{\prime \prime}$ in diameter.
Same basic construction and fastens same wires as No. T-18.

Also used for RADIANT HEAT WIRE

Uses T- 25 staples
with $1 / 4^{\prime \prime}$ round crown in $9 / 32^{\prime \prime}$, 3/8", 7/16" and 9/16" leg lengths
T-18 and T-25 staples also available in Monel with beige, brown and ivory finish at extra cost.

Arrow Automatic Staple Guns save 70\% in time and effort on every type of wire or cable fastening job. Arrow staples are specially designed with divergent-pointed legs for easier driving and rosin-coated for greater holding power! All-steel construction and high-carbon hardened steel working parts are your assurance of maximum long-life service and trouble-free performance.

Ask your Electrical Supply Dealer
or write for further details.

equipment report

BSR Metrotec FEW-1 Graphic Stereo Frequency Equalizer

Circle 82 on reader semice cards
THE FEW-I FREQUENCY EQUALIZER IS an attempt to cure the ills of response deviation caused by the practical restraints of the stereo system's surroundings. Speaker location, room design, and furniture and drapery arrangement in the home is rarely dictated by good acoustical sense. There are also hearing losses to contend with, occurring at younger ages, due to high intensity sound and noise exposure. There are many of us who like effects such as emphasized bass despite what the hi-fi purists may have to say. The FEW-1 allows correction for these problems and desires by adjusting the frequency response in the regions of five frequencies: 60,240 , 1000.3500 and $10,000 \mathrm{~Hz}$.

In effect the Graphic Stereo Frequency Equalizer is a sophisticated tone control giving selective shaping of the resultant frequency response at the listener's ear. The system retains a great deal of flexibility because the effects are relatively narrowband without much overlap. Adjusting the 60Hz control, for example, has no effect on the mid-band response. This is in large contrast to the conventional preamp and amplifier controls where there is considerable overlap of the bass and treble functions.

The responses centered around the five frequencies can be varied over a total range of $\pm 12 \mathrm{~dB}$. This is a substantial range and fairly gross response anomalies can be corrected. Both intermodulation and total harmonic distortion are specified at $.05 \%$
maximum at 2 volts output. We measured a 1.8 dB voltage loss at the flat setting which is within the specified 0 to -2 dB . Hum and noise is called out at 80 dB below 1 volt with the input shorted. The input and output impedances are 75,000 and 10 ohms respectively. The recommended load impedance is 10,000 ohms or greater. This is lower than would be expected at the input to most amplifiers and is entirely adequate. The reason for the limit is a reminder that although the output impedance is in ohms, excessive loading can increase the distortion of the output emitter follower.

CONTROL RESPONSE PLOTS-boost curves in the top graph, attenuation in the lower.

With the controls centered we measured the response to be $+.3,-.2$ dB from 5 Hz to 100 kHz relative to 1 kHz which is well within the $\pm 1 \mathrm{~dB}$ BSR specification. We were surprised at the accuracy to which this setting was obtained since it is dependent on the linearity and adjustment precision of the potentiometers.

The measured response with the individual controls in their extreme positions are plotted in the accom-
(continued on page 24)

Energy shortages tell us we have to change our driving style. Now! It doesn't mean we have to go back to horse and buggy days. But it does mean we have to make every drop of gas give us the most go for our money. Anyone with horse sense knows that a well-tuned car gets better mileage, and in times of fuel shortages, better mileage means a lot.

The Mark Ten B Capacitive Discharge System keeps your car in better tune so it burns less gas. Using Mark Ten B is more than horse sense. It's the smart move under the hood, helping a nation survive an energy crisis and keeping you on the road. Delta Mark Ten. The best way to go.

letters

BUILDS TV TYPEWRITER
I enjoyed, with great enthusiasm, buildand debugging the TV Typewriter. I am enclosing herewith a photo of a message transmitted on my TV.

Although I don't have a keyboard yet, I am able to test the unit with the switch set-up.

I have enjoyed your construction articles for many years and am looking forward to more of the same in the future. W.G. Obringer Torrance, Calif

ADD TO TV TYPEWRITER. PLEASE!

The purpose of this letter is twofold One, to point out two small errors in the Timing board pattern, but most importantly, to add my vote to encourage you to forge ahead on add-on projects to extend the capabilities of the TV Typewriter. I would be particularly interested in seeing articles on

1. A suitable modem for both phoneline and tape input/output.
2. Calculator capability.

3. Programming capability for the calculator.
4. Micro-computer/Processor development
appearing perhaps in that order
Enclosed you will find some photographs of the TV Typewriter I am building. As you can see, it is esentially complete except for a dedicated $9^{\prime \prime}$ TV that will mount in the surplus cabinet I bought
(comtinued on page 22)

Introducing the expensive digital multimeter that doesn't cost a lot.

The B\&K Precision Model 281.
This $21 / 2$-digit unit is so versatile, its range covers 99% of your measurements. And its DC accuracy is 1%. The stable 281 also gives you positive over-range and wrong-polarity indications.

It's easy to use and easy to read across all 32 ranges, 100 mV to 1000 V .

Naturally, we're enthused about our Model 281 You will be, too, when you see our complete specs.
Call your B\&K distributor. Or write Dynascan Corporation.

Product of Dynascan Corporation 1801 West Belle Plaine Avenue, Chicago, Illinois 60613

You'd probably expect a portable oscillosope as rugged and reliable as this one to cost a lot.
 You'd be wrong.

Introducing the B \& K Model 1403 3" Solid-state oscilloscope. It's so compact, reliable, and inexpensive that it's the perfect scope for most on-the-line monitoring applications. Look at its specs: DC to 2 MHz bandwidth at $20 \mathrm{mV} / \mathrm{cm}$. Recurrent sweep speeds from 10 Hz to 100 KHz . New wideangle CRT to reduce case depth to a minimum. Direct-deflection terminals for waveforms up to 150 MHz . Weighs only $81 / 2$ pounds. And has a smoked acrylic graticule for trace sharpness and easy reading. All the reliability and accuracy you need in a monitor scope-at a surprisingly low price.

Contact your distributor, or write
Dynascan Corporation

BLIV Very good equipment at a very good price.
Dynascan Corporation.
1801 West Belle Plaine Avenue, Chicago, Iltinois 60613

MITS Presents The new 908DM, Desk-Top Calculator.

*Programmer

To be used with the MITS 816, 1440, or the new 908DM, desk calculators

1. Provides 256 programming steps. (With option of expandability to 512 steps.)
2. Stores up to 64 separate programs. Size: $8-1 / 2^{\prime \prime} \times 12^{\prime \prime} \times 3-1 / 4^{\prime \prime}$

Instructions:
A. "If Neg," B. "Go To," C. "Return," D. "Remember," E. 2 Run modes of operation *Programmer Kit \$199.95 Assembled. \$299.95 *Combination 903DM and Programmer Kit \$299.95 Assembled $\$ 399.95$

Warranty: Kit: 90 days on parts, Assembled: 2 years on parts and labor
*Prices subject to change without notice. Available from your local Olson Electronics Dealer

mits ${ }^{\text {we }}$

"Creative Electroniss"

learn by doing!

Perform more than 200 exciting experiments with CIE's fascinating ELECTRONICS LABORATORY PROGRAM!

You get your own 161-piece electronics laboratory... with authentic electronic components used by industry!

You learn how to construct circuits and connect them with a soldering iron, which is part of your CIE laboratory equipment. This "hands on" experience is extremely valuable in applying what you learn.

Testing and troubleshooting are an important part of your learning experience. Included in your laboratory is a precision "multimeter" to diagnose electrical and electronic troubles quickly and accurately

Modern space-age components like this IC (integrated circuit) are professional quality and can be used again and again in many of your projects. Lesson by lesson, piece by piece your knowledge grows!

Prepare now for a high income career in Electronics...the Science of the Seventies.

Electronic miracles are changing today's world with breathtaking speed.

And with this growth in electronics technology has come a brand new need... a demand for thousands of electronics technicians, trained in theory and practice to build the products, operate them and service them during the Seventies.

Don't just wait for something to "happen" in your present job. Get ready now for a career you'll really enjoy with a good income and plenty of opportunity for advancement.

Experience with experiments is your best teacher

"Hands on" experience helps to reinforce basic theory. When you learn by doing, you discover the "how" as well as the "why." You'll find out for yourself the right way as well as the wrong way to use electronic components. How to construct your own circuits, to discover trouble spots and learn how to fix them. And with CIE's special Auto-Programmed ${ }^{\text {B }}$ Lessons, you learn faster and easier than you'd believe possible.
CIE's fascinating course, Electronics Technology with Laboratory, teaches you Electronics by making it work before your eyes. And you do it yourself, with your own hands.

Importance of FCC License and our Money-Back Warranty

Many important jobs require an FCC License and you must pass a Government licensing exam to get one.

But, a recent survey of 787 CIE graduates reveals that better than 9 out of 10 CIE grads passed the FCC License exam.

That's why we can offer this famous Money-Back Warranty: when
you complete our Laboratory Course, which provides FCC License preparation, you'll be able to pass your FCC exam or be entitled to a full refund of all tuition paid. This warranty is valid during the completion time allowed for your course.

You get your FCC License - or your money back!

You'll have high paying job opportunities

Electronics is still young and growing. In nearly every one of the new exciting fields of the Seventies you find electronics skills and knowledge are in demand. Computers and data processing. Air traffic control. Medical technology. Pollution control. Broadcasting and communications. With a CIE Diploma and an FCC License you can choose the career field you want . . . work for a big corporation, a small company or even go into business for yourself.

Here's how two outstanding CIE students carved out new careers: After his CIE training, Edward J. Dulaney, President of D \& A Manu-
facturing, Inc., Scottsbluff, Nebraska, moved from TV repairman to lab technician to radio station chief engineer to manufacturer of electronic equipment with annual sales of more than $\$ 500,000$. Ed Dulaney says, "While studying with CIE, I learned the electronics theories that made my present business possible."

Marvin Hutchens, Woodbridge, Virginia, says: "I was surprised at the relevancy of the CIE course to actual working conditions. I'm now servicing two-way radio systems in the Greater Washington area. My earnings have increased $\$ 3,000$. I bought a new home for my family and I feel more financially secure than ever before."

Send now for 2 FREE BOOKS

Mail the reply card or coupon for our school catalog plus a special book on how to get your FCC License. For your convenience, we will try to have a representative call. If coupon is missing, write: Cleveland Institute of Electronics, Inc., 1776 E. 17th St., Cleveland, Ohio 44114. Do it now!
Approved
under
G.I. Bill
All CIE career
courses are ap.
proved for educa-
tional benefits
under the G.I. Bill.
If you are a Veteran
or in service now,
check box for G.I
Bill information.

$\rightarrow \square^{-\infty}=$ Cleveland Institute of Electronics, Inc.
 1776 East 17th Street. Cleveland. Ohio 44114 Accredited Member National Home Study Council

Please send me your two FREE books:

1. Your illustrated school catalog, "Succeed in Electronics. 2. Your book, "How to Get a Commercial FCC License.

I am especially interested in: \square Electronics	Technology with Laboratory
\square Electronics Technology	\square Industrial Electronics
\square Electronic Communications	\square First Class FCC License
\square Broadcast Engineering	\square Electronics Engineering

3 ways to power 4 sets

Good

The A-104 U/V signal divider feeds four TV and/or FM sets from one antenna. Low loss, high isotation between sets. Mounts indoors or on mast with optional jifty mount. 300ohm connections. One of ten band separater/combiner and signal divider devices.

Better

HOMER 300 U/V-Economy priced, amplified, four-way splifter (four 300ohm outputs). Excellent choice for moderate signal areas where passive splitter degrades TV pictures. Gain 8.5 dB VHF, 2.5 dB UHF with four sets operating: 4 -way lightning and surge protection. One of four Homer models: all channel, 75 ohm, plus a 75 and 300 model featuring patented wide dynamic range ICEF circuit.

Best

DA-4 U/V-300-High performance, all channel amplifier delivers superior picture power to four sets in areas with both strong and weak signals. Features patented ICEF circuit for wide dynamic range. Three transistors, transformer power supply. Typical gain: VHF 7.0 dB , UHF 8.0 dB on four sets. Also available in 75 -ohm, all channel version, as well as VHF/FM 300 and 75 ohm models.

In addition to these high quality products, Blonder-Tongue offers TV and FM reception improving products from IV antenna to matshing transformers. Available at your local electronics supplier. Blonder-Tongue Laboratories, Inc., One Jake Brown Rd., Old Bridge, NJ. 08857.

LETTERS

(continued from page 16)
with the keyboard.
Almost every module of the TV Typewriter has gone on-line without a hitch. I did, however, catch a short while reproducing the pattern between pins 5 and 6 of IC2 on the Timing board. The other error is an apparent connection between pin 11 of IC10 and Test Point R on the Timing board. This connection is also indicated in the Fig. 7 schematic. Hooked-up this way, of course, I got out 55 Hz at the end of the timing chain. A little "reasoned, logical testing" and a look at the timing of the inputs to th is gate (IC10-c) with a dual trace scope showed we wanted the Q timing signal instead of the R timing signal Works fine now (60 Hz out).

It is a pleasure to hear that the response to your TV Typewriter project has been so overwhelming (except that it sure made it hard to get a 2513). I hope all of this response will hasten the development of your add-on project plans
M. Paul Farr San Pedro, Calif. 90731

MORE ABOUT PHONE SENTRY

Some added confusion resulted from my comments in the "Letters" section of the September issue. The marked-up schematic of the Phone Sentry was omitted.

The correct change is: forget about adding the capacitor between pins $1 \& 8$ of IC2. Instead, cut the foil between pins 4 $\& 8$ and add a 470K resistor between pins $4 \& 8$. Now, add a $1-\mu$ F capacitor between pin 4 and ground.

Another comment: in those states that permit you to record phone conversations, you can record with the Phone Sentry as follows: Turn OFF answer player unit 1; turn ON Phone Sentry and depress TEST button; turn ON the PLAYBACK switch. Be sure to restore all to normal when you're done recording

Roger L. Smith
Phoenix, Arizona

We think Sylvania ChroMatrix ${ }^{\top M}$ gives the best of both.
Brightness is great if you don't have to lose contrast.
And contrast is great if you don't have to pay for it with a dimmer picture.

At GTE Sylvania, we think the best replacement tube is the one that gives you just the right balance of both.

That's why we developed the ChroMatrix line using a jet black dark surround and Sylvania bright phosphors.

Our design uses the black surround to get both brightness and contrast. And it also helps to maintain a uniform brightness across the entire face of the tube.

As replacement tubes for many of the color sets now coming out of warranty, ChroMatrix is a line that's hard to beat.

And you can get them now in all large-screen sizes from 19" to $25^{\prime \prime}$ diagonal including the popular $23^{\prime \prime}$ diagonal size.

Using the replacement line that gives the best of both worlds might make customers think that you're the best serviceman in this one. Sylvania Electronic Components, 100 First Avenue, Waltham, Mass. 02154. NEW BIPOLAR MULTIMETER: AUTOMATIC POLARITY INDIGATION

Model ES 210K
Displays Ohms, Volts or Amps in 5 ranges - Voltage from 100 Microvolts to 500 V - Resistance from 100 Milliohms to 1 Megohm - Current from 100 Nano Amps to 1 Amp $\$ 77.00$ Case ex: $\$ 12.50$ (0ptional probe) $\$ 5.00$

40 MHz DIGITAL FREQUENCY COUNTER:

- Will not be damaged by high power transmission levels.
- Simple, 1 cable connection 10 transmitter's output.

ES 220 K - Line frequency time base. 1 KHz resolution. 5 digit: $\$ 69.50$ Case extra: $\$ 10$ ES 221 K - Crystal time base. 100 Hz resolu. tion. 6 digit: $\$ 109.50$ Case extra: $\$ 10.00$ DIGITAL CLOCK:

ES $112 \mathrm{~K} / 124 \mathrm{~K} \cdot 12 \mathrm{hr}$ or 24 hr . clock $\$ 46.95$ Case extra: Walnut $\$ 12.00$ - Metal $\$ 7.50$

CRYSTAL TIME BASE:
ES 201 K - Optional addition to ES $112 \mathrm{~K}, 124 \mathrm{~K}$ or 500K. Mounts on board. Accurate to. 002\%

I D REMINDER:

ES 200K Reminds operator 9 min .45 sec . have passed. Mounts on ES 112 or 124 board. Silent LED flash $\$ 10.95$ Optional audio alarm $\$ 4.00$ extra.

Dependable solid state components and circuitry Easy reading, 7 segment display tubes with clear bright numerals. These products operate from 117 VAC, 60 cycles. No moving parts. Quiet, trouble free printed circuit

Each kit contains complete parts list with all parts, schematic illustrations and easy to follow, step by step instructions. No special tools required

ORDER YOURS TODAY: Use your Mastercharge or Bankamericard Mostey Back Guarantee

EQUIPMENT REPORT
(continued from page 14)
panying figures. The response peaks are all within $\pm 1 \mathrm{~dB}$ of 12 dB which again is quite good.

The equalizer uses two identical filter channels with ganged sliding potentiometers. This is the one place we think the design falls short of its intent. We would prefer to see each control split down the middle with separately color coded handles. In this way the true versatility needed to compensate for unsymmetrical speaker placement and hearing loss would be obtained.

The FEW-1 can be inserted between the preamplifier and amplifier or in series with the tape monitor circuit of a stereo receiver. Tape monitoring facility is still retained as an additional level of switching and phono jacks are included. In addition to the tone controls the front panel holds the on/off and tape monitor in/out switches and a pilot lamp.

ONEIDA INSTANT-WELD ADHESIVE.

Circle 81 on reader service cards
IN ELECIRONICS REPAIR WORK, WE run into lots of things that must be put back together; metal, plastic, and ceramic, to name a few. So when we lind a new product of modern chemicat technology that can help us do hard jobs more casily, it's welcome

The Oneida Electronic Mfg. Co. of Meadville, Pa.. has come up with one of these. They call it "InstantWeld", and that"s about as appropriate as you could get. Its full name is "Al-pha-cyanoacrylate industrial strength adhesive". Cyanoacrylate adhesives have been known for quite a while, but they had certain drawbacks. Oneida has overcome these

This is a single compound; no mixing. It has amazing bond strength; one square inch will hold up to a 5.000 pound pull. It comes in a very small tube, but only a pinhead-size drop is all you need for the average radio-TV shop job. Also, it sets up right now. You apply the cement. put

We found the instrument quite useful in tape recording applications. It was a boon in recording live organ on a cassette deck. The bass was emphasized so that it could be heard on playback which was previously impossible. Other situations where it would be useful is where hum or noise is excessive. The $60-\mathrm{Hz}$ frequency control has been judiciously chosen with this in mind.

Available in either wired or kit form the equalizer uses 8 transistors in the dual amplifier and 4 diodes for the transformer isolated power supply. All circuitry is on a single PC board with the exception of some of the filter components mounted with the sliding pots.

The equalizer measures $4 / 8^{\prime \prime}$ high by $83 / 8^{\prime \prime}$ wide by $512^{\prime \prime}$ deep and draws 3 watts. Sheet metal construction is used with oiled walnut side blocks.

The FEW-1 would be a nice addition to an otherwise complete system and would be just great for the knob counter particularly because the added knobs really do a job. R-E
the pieces together, hold them for not more than three or four seconds, and there you are. In less than a minute. it's practically set up. (This can lead to problems, be sure whatever you're cementing is exactly where you want it.

I have a pet sweep-generator, that lives on a shelf over the bench. Part of it is a heavy 8 -step attentutor (2 to 3 pounds) in a separate case, connected to the sweep with coax. I was always knocking it oft the top, and breaking the cable. This annoyed me intensely, since I do not like to fix BNC connectors. So this would be a dandy project. I'd been meaning to holt it to the sweep case for a long time

Taking the four little plastic feet off, I put a wee dab of Instant Weld on each one, and stuck them on the bottom. This is where I learned about "put it where you want it!". I set one of them about $1 / 8$ inch from the corner, then tried to slide it over: no slide. It was there.

Then, I put a wee dab of I-W on the bottom of each foot, and very carefully placed it where I wanted it. That's where it is, and it looks as if it'll stay. In less than a minute. I could pich up the whole thing by the attenuator case. No more broken coax.

A very detailed set of instructions comes with each tube. Follow them; they're simple. The only precaution you must take is to be sure you get the cap back on tightly.

Never having been able to refrain from a jape, I bonded a dime to the glass counter at the coffee shop. Two weeks later. it's still there, and it will probably stay. If some of m ? friends can't get it loose, it's tight.

R-E

Radio Shack Is Electronic Parts Paradise! We're "The Parts Place" For magazine projects \& Do-it-Yourself experiments!
 12-Volt Power Con-
 CN

 verter. Converts 120 VAC to 12 VDC. Use to charge 12 -volt bat teries or as a battery eliminator when servicing 12 VDC equipment. Output: 12 V at 1.75 amps continuous, 5 amps surge. Blowout protected. 18^{95}

Auto Siren Alarm Kit. For 24 hour protection against wouldhour protection against wouldalarm sounds if hood, trunk or doors are tampered with. 6 switches, 2 keys, lock. wire/ hardware included. For $\mathbf{2 1 9 5}$

Printed Circuit Kit. All you need to custom-design your own circuits. Two $4 \frac{1}{2} \times 3^{\prime \prime}$ copperclad boards, resist-ink solvent with pen, $6-\mathrm{oz}$. bottle of etchant, layout strips \& circles, scouring pad, $1 / 16^{\prime \prime}$ drill bit, $4 \frac{1}{2} \times 6^{1 / 4} \times 21 / 4^{\prime \prime}$ plastic etching tank. Safe to use.

6 to 12 VDC Inverter. Converts 6-VDC input to 12 -VDC output. Dual inputs-6V neg. \& 12 V pos. grd. Output: 12V neg grd. at 3 amps . Solid state, fuse protected. Ideal for use in VW's dune buggies, etc

Etchant Solu tion. Removes copper from PC boards without damage to the board. Safe, easy to use. A "must" for hobbyists, builders \& experimenters. 169

Hook-Up Wire. Five 100^{\prime} coils in assorted colors. Sizes \#18 thru \#22. Solid \& stranded types
3^{69}

16 fluid oz.

SPST Magnet Contact Switches, Rated 0.5 A at 125 VAC.

Prices may vary at individual stores.

Aluminum
"Mini" Boxes. Lightweight, sturdy. Many sizes available. Low as
"Mini" Size Filament Transformers. From 6.3V to 24V. 300 mA DC rated Low as

129

and ALLIED RADIO STORES
\& A TANDY CORPORATION COMPANY

The Pencil Soldering Iron with Operating Light, 2 Heats and On/Off Switch

LIMIT SWITCHES
by JACK DARR
SERVICE EDITOR

THERES ONE HANDY SAFETY DEVICF that you'll find on a lot of heating appliances. It should be used on all of them. really. This may look like an odd-shaped blob with several wires going into it. It's called a "limit switch". It is a switch. automatically operated by a thermal element. usually a bimetal blade. It's normally closed. When the temperature of the appliance heater reaches a certain level, the switch opens, to keep things from getting too hot. In some of the larger units, the bimetal blade may be in the form of a spiral or coil, instead of the familiar flat blade, but it works in the same way.

Many of these are adjustable. You will see a calibrated scale, marked in degrees F. A sliding pointer shows the cutoff temperature for which it is set. Note: some of these have locking screws; if the pointer can't be moved. look for a small screw that holds it in place. Loosen this, and then retighten it after adjusting the switch. Some types are preset; these open the switch at a certain temperature

On a gas furnace or similar heater, with a fan to force air-flow, the limit switch may be a dual type. One section will control the fan-motor. This stays open until the plenum has reached a high temperature; this keeps the fan from blowing cold air up your pantslegs. (Plenum: heat-chamber on top of furnace.) The other section is the limit-switch. It is usually actuated by the same thermal element. but it is normally closed.

The power to the electrically-operated main gas valve flows through these contacts. If the temperature of the plenum goes too high, they open, and the gas-valve automatically closes. (All standard gas-valves are built so that when the power fails, they close atomatically. see diagram.) This type of dual of switch will have two pointers: one sets the temperature at which the fan comes on, the other the temperature at which the burner is cut off.

Some of these switches use the familiar flat blades. with electrical contacts in an insulated mounting on the ends. In the heavy-duty types, such as those found on furnaces, the switch itself may be a ${ }^{*} \mathrm{Mi}$ roswitch" or similar unit. These take only a very small pressure to operate: they are tripped by an arm on the end of the thermal blade or spiral unit.

Other types can be found in the heating ducts of electric or gas clothes driers. These are generally preset. fixed types. Their purpose is to prevent the temperature in the duct from going tow high. A typical unit might close att about 200 degrees and open at 300-350 degrees; this varies with different units. If a control shorts, or anything hap-
pens that would let the heating element stay on too long, this thermostat opens, breaking the supply circuit. A similar control can be used with gas heated driers. If the duct temperature goes too high, the limit switch shuts off the main gas-valve.

In most clothes driers, there will be another thermostat in series with the limit switch. This one works just like the limit switch, of course, but it will be adjustable for various temperatures, so that the drier can be used with different kinds of fabrics. Some models have as many as 6 different "heats"

The thermostats used for this purpose, in clothes driers, will look quite a bit different to the types found on furnaces, etc. They'll be small round-cased units, with lugs or push-on terminals. Many of these are of the "disc" type. They're bimetal, just like the blade, but made in the form of a "dished disc". When this gets hot, it will "snap" from one side to the other, just like the bottom of an oil-can! This operates the electrical contacts.

Checking and servicing

Finagle's First Law says that "If there is anything in there that can cause trouble, it certainly will!" So, if any kind of heating unit refuses to work. check the fuel supply first: gas or electricity. If this is present at the normal value, then check the gas burner or electric heating element. If you can read the full supply voltage across the terminals of an electric heating element, but it's stone cold, that's it. The element is open. Replace with an exact duplicate.

However, if your check at the terminals of the heating element shows zero voltage, then you've got another problem! Something between the line plug and the heating element is open. (Incidentally, one good thing to check here is to be swre that the thing is turned on! Check the timer, switch or whatever turns it on. normally.)

In large appliances such as clothes driers. it's usually not too difticult to follow the wiring: it's visible. The thermostats, etc will be fairly easy to see. Take a voltage reading right across the terminals of the thermostats and switches. Full line voltage present across what should be a closed switch indicates trouble. One quick check for this is to turn it off, connect a jumper across the sus-
(continued on page 96)

Southwest Technical Products Corporation
 219 W. RHAPSODY
 SAN ANTONIO. TEXAS 78216
 PHONE: 512 DI 4-314O

February 1974

Dear R-E Readers,
Don't know how many of you have our new 1974 catalog, but it is out and you can get your copy by simply ripping out the "Bingo" card in the back of the magazine and circling our reader service number. This edition features our "Tigersaurus 250" amplifier on the cover, in case you are not sure which edition you have.

I'll bet that there are quite a few of you out there who are not aware of the various audio modules that we offer for constructing custom audio and PA systems. Not only do we offer preamplifier systems such as our " 558 " instrument preamp, but also mixers, reverbs, and basic power amplifiers. You can get a list for the asking of the various components that go into our \#141 guitar amplifier system. Thus, if you want to build an amplifier with only one channel and no reverb you can do so, and save the cost of the other circuits in the standard kit. In addition to these kits, we now have available our new Ex-1 stereo expander-compressor kit. This expander-compressor uses a variable gain integrated circuit to obtain the expansion, or compression. This results in a fast acting low distortion system that is far superior to the commonly used lamp and photoresistor circuits. The expander not only can increase the dynamic range of your music, but will also enhance the stereo effects on many records. It is easily added to most systems by connecting it to the "tape monitor" jacks of the preamp.

I would like to offer a few comments on an idea that some of the other kit manufacturers are promoting lately. This one goes "you should not feel bad about paying as much, or more, for a kit than you would pay if you bought the thing assembled and ready to use from the store up the block." The idea being that you get all that fun and that you will be familiar with the device if it ever needs service. To all of this I say BULL. Any of you in the service business, or who have done any troubleshooting know better than this. You don't have to put the thing together to be able to quickly and effectively service it. All you need are proper instruments and a schematic for most things. There is no reason why a kit should cost as much or more than a comparable assembled product; be it a Hi Fi , TV set or calculator. What it should cost is at least 20% less. If it doesn't then it is either badly engineered, or a rip-off. In addition to this you should expect to save even more if you are buying the kit by mail, directly from the manufacturer. If you really have nothing better to do with your time, or if you need a passtime and don't care what it costs then our competitors kits are just what you need. If your time is valuable and you want to get something for your effort we think you should take a close look at our products. I will be happy to send you a schematic, or additional information on any of them you might be interested in checking into.

We offer a full refund on any kit that you decide is not a bargain or not what you were led to expect; if it is returned to us unassembled and in original condition within two weeks of receipt. What have you got to lose?

Sincerely,

Daniel Meyer

DIETAL COLO

Bell\&Howell Schools introduces an amazing new color TV featuring channel numbers and digital clock that flash on the screen and automatic channel selector!

Now you can build and keep a color television that's ahead of its time!

You've seen TV's that swivel, TV's with radios built in, TV's small enough to stuff in a suitcase and TV's that have remote control.

But now comes a color television with features you've never seen before. Features now possible as a result of the new technology of digital electronics
features that make Bell \& Howell's new 25 -inch diagonal digital color TV ahead of its time! Like ...

Channel numbers that flash big and clear right on the screen. An on-screen digital clock that flashes the time in hours, minutes and seconds with just the push of a button. An automatic channel selector that you pre-set to skip over "dead" channels and go directly to the channels of your choice.

And, to insure highest quality performance, this new TV has all-electronic tuning, reliable integrated circuitry, and 100% solid-state chassis for a brighter, sharper picture with long life and dependability.

Perform fascinating experiments ...test your new TV as you build it... with the exclusive Electro-Lab, ${ }^{(x)}$ electronics training system. It's yours to build and keep!

Designed exclusively for our students, this new Bell \& Howell ElectroLab ${ }^{"}$ features the most sophisticated and up-to-date "tools of the trade". In-

Simulated TV picrure.

You build and keep
this revolutionary new Bell \& Howell $\mathbf{2 5}{ }^{\prime \prime}$ diagonal digital color TV! Mail the postage-free card today for complete details, free!
struments you can use professionally after you finish the program.

A new digital multimeter that measures voltage, current and resistance and displays its findings in big, clear numbers. Far more accurate and readable than conventional "needle pointer" meters that require guesswork and interpretation.

The solid-state "triggered sweep" oscilloscope is a "must" for accurate analysis of digital circuitry. With it you are able to make measurements of circuits in much the same way that heartbeats are measured on an electrocardiograph. Includes DC wide-band vertical amplifier and "triggered sweep" feature to lock in signals for easier observation.

The design console is a valuable device for setting up and examining circuits without soldering! Features patented modular connectors, AC power supply and transistorized dual range $D C$ power supply.

RTVIS HERED

Build it yourself... the perfect way to learn all about the exciting new field of digital electronics!

It's a fascinating spare-time project you can enjoy at home!

Imagine spending your spare time acrually building your own 25 -inch diagonal digital color TV! It's a project you can enjoy working on right in your home. And you'll be amazed at the electronics knowledge you'll pick up in a relatively short period of time!
There's no travelling to classes, no lectures to attend, and you don't have to give up your job or paycheck just because you want to get ahead. When you finish this new Bell \& Howell Schools program, you'll have the skills you need plus a great color TV to keep and enjoy for years!

Digital electronics is changing our lives!

There's a lot more to digital electronics than just the numbers! True, that's what you see on more and more products like digital calculators, clocks and watches. But behind the numbers lies a fantastic new technology that's creating higher standards of accuracy and dependability. The versatility of digital electronics has begun another industrial revolution. Its growth and applications are limitless, giving us new and better ways of doing things and spectacular products like this new Bell \& Howell digital color TV!

You don't have to be an electronics expert to build it ... we help you every step of the way.

One of the beauties of this TV is that you don't need previous electronics experience to build it! With a few simple household tools, our step-by-step instructions and the exclusive Electro-Lab ${ }^{\circledR}$, you've got all the basics you need. Should you ever hit a 'snag', you're just a toll-free call away from one of our expert instructors who can help you solve it. You can also take advantage of our in-person "help

sessions" held in major cities throughout the year where you can enjoy "talking shop" with instructors and fellow students.

Pick up valuable skills in digital electronics that could lead to extra income full or part time ... or a business of your own!

Once you have your new TV, cash in on all that you learned from building it! This new Bell \& Howell program employing digital electronics will help you gain valuable new skills that could easily lead to extra income, part time A service or repair business of your own? Why not! We even show you how to get started with a complete volume on the basics of setting up a TV servicing business. Get the complete story on this exciting, learn-at-home program...the world's first color TV course employing digital electronics technology!

Mail card today

 for full details, free!Electro-Lab is a repistered tradermark of the Bell \& Howell Company.

If card has been removed, write
An Electronics Home Siudy School
DeVRY Institute of technalogy
-
one of the
BELL モ HOWELL SCHOOLS
\$141 Belmont. Chicago ilimois 6064

microphoner matter most.

Never have so few words said so much about sound system installations. The truth is that a carefully chosen, top-quality microphone makes a measurable difference in sound system quality-regardless of the other components in the system. It is false economy at its worst to be a microphone miser. Install Shure Unidyne or Unisphere microphones-for installations with a marked superiority in voice intelligibility (and fewer service calls due to microphone problems).

Shure Brothers Inc.
222 Hartrey Ave., Evanston, Illinois 60204
In Canada: A. C. Simmorids \& Sons Ltd.

EXCLUSIVE! Heathkit's new digital color TV

Digital design techniques produce unique features found in no other set

by LARRY STECKLER

EDITOR

State-of-the-art! these four words are often associated with the space program, or the most recent developments in integrated circuits. But now they can be properly used to describe the brand new Heathkit GR-2000 color TV kit. In fact, this new set uses so much digital design and so many integrated circuits, that it can be said that it sets new standards for state-of-the-art in color TV.

At first glance it looks just like any ot her color TV. At second glance you start noticing the differences-there are no knobs on the front panel; and when you turn the set on, something remarkable happens-the channel number and the time (hours, minutes, and seconds) appear on the screen! And that's just the beginning.

There are many special design features built into this TV and we will be taking a close look at some of the most interesting ones. First, there are several features that must be labeled "unique." These are features that are not to be found in any other production color TV being sold in the U.S. There are six of these "unique" features in the GR-2000.

1. Silent, all-electronic tuning. It's done with uhf and vhl varactor diode tuners that are de voltage-controlled. The tuners themselves are located right on the chassis. and are not attached to the front panel of the set. To change channels, the viewer taps either an up or down switch on the front panel of the set. We will explain how this circuit operates later.
2. Touch-to-tune, reprogrammable, digital channel selection. You program
up to 16 channels, uhf or vhf; and in whatever order you wish to arrange them. Great for switching from the football game on channel 2 to the football game on channel 7, without having to go through any other channels. And there's no need to ever tune to an unused channel. You don't program them, so they never appear.
3. Touch volume control. Again. there is no knob, when the remote control is used. Instead, there are two more touch switches to use to raise or lower the volume in small steps. More on this later.
4. On-screen electronic digital channel readout. This feature has been advertised by some set makers. Sharp offers one set with this feature. Hitachi is talking about it, and Blaupunkt sells one in Europe. In the GR-2000, the numbers appear on the screen each
time you switch channels or touch the recall button. The length of time that they are visible is adjustable. For more details on this circuit, keep reading a bit longer
5. On-screen electronic digital clock readout. This is an optional low-cost feature. It will display the time in I2- or 24-hour format, with your choice of hours and minutes, or hours, minutes and seconds. The clock is as accurate as the frequency of the $60-\mathrm{Hz}$ ac line. The clock continues to an when the set is off. The readout appears on the screen whenever the channel number appears. We'll look at the clock curcuit a bit further on.
6. LC i.f. amplifier with fixed tensection LC i.f. bandpass filter in the i.f. strip. This unit makes possible an unusually finei.f. response curve. Bandpass skirts offer fast, smooth rise and

WITH THE REAR PANEL SWUNG OUT you can see just about all of the electronics inside the Heathkit GR-2000. Note all the IC's.
fall times. The filter eliminates the need for critically adjusted traps for eliminating adjacent-channel and in-channel carrier beats. No i.f. alignment is needed. . . ever. This is the first set we have seen that includes a tilter-type i.f. It has several obvious adrantages-not only in performance, but in assembly ease (no instrument alignment), and in longevity of its picture-quality excellence. More details further on.

There you have a rundown of the really special features that are built into the set. We will look at each of these circuits in much greater detail shortly. But first let's take a look at the other notable features of the GR-? 000 . and there are many of them.

The set is all solid state (with the exception of the picture tube. of course). Nineteen integrated circuits. including custom MOS designs. are used (plus another 13 IC's if you buy the optional remote control and yet another IC if you buy the optional clock). There are 71 transistors. all mounted in sockets for easy plug-in replacement. And a

FIG. 1-(right top) HOW DIGITS are formed on the screen of the color set.

FIG. 2-(right) MODIFIED CHARACTER is used by Heath for earier reading.

FIG. 3-(far right) a-Channel number display. b - channel number with a six-digit time display. c-channel number with four-digit time display.
HORIZONTAL POSITIONING HORIZONTAL
SYNC
GATED
CLOCK INPUT

GATEOCLOCK
GENERATOR ENABLE

FIG. 4-BLOCK DIAGRAM OF CMOS display IC that forms the characters that appear on the screen of the set.

FIG. 5-THE ENTIRE DISPLAY SYSTEM in block diagram form. You'll note that it is far from a simple circuit

FIG. 6-THE DOT GENERATOR is built into the chassis. It's a single IC
vast portion of the electonics. more than ever hefore is mounted on 20 plag-in ciscutit modules. The spectal group of electoonice that controls digilat channel selection, the digital clock, readout positioning. and the convergence controls is located in a slideout drawer for casy aceess. You can sce this draver on our cover

Pieture contrast is de voltage con trolled. There's an IC amplifier for bed ter color rendition, improved color hid ler theseshold pertormance and hettes dynamic range and semsitivity of the automatic chromb control.

A new vertical sheep circuit uses

FIG.7-I. F. RESPONSE CURVES. a-this is the response curve of a modern conventional color set. b-this is the response curve of the Heath LC-filter i.f. strip.
complementary power llamistors. mathing it possible to eliminate the output lannformer whith magnetic fiek and lincarity problems. Intertace is near perfect

There are some interesting service aids 100 . A prae dot generator. huilt with IC's. is a part of the set. Both verlical and horizontal centering controls are provided. As in previous color TV hits. a lest meter is incloded.

Even the color picture tuhe is new. It is the latest 25-inch diagonal hlach (megative) matrix picture tube. It offers fully illuminated and. therefore bright er phosphor dots and an etched faceplate to reduce glare

The set hats a large nomber of modules. 20 plag-in circuit boardsthat both speed construetion of the hit and make the linished set easier to service whenever service hecomes necessary.

The readont system that generates positions and controls the numerical readout that appears on the picturelube screen. To display a chatrater on the soreen, the election heam must he formed on during the appropriate periods ats it scatos the fiee of the picture tube. In the GR-?000 at 7 -segment digit is used.

The number of different rime periods for which the cectron beam must be turned on and off as eath digit is formed determines the complexity of the character generator. For this reason Heathat engineers selected the 7-segment digit shown in Fig. 1. Fach segment in such a digit is a stratght line that lies on euher the horizontal or vertical axis (x or y). The four vertical
 transistors are used.
segments occupy only two time periods during the horizontal scan which occur at the same time on each line. The three horizontal segments also occupy the same time periods on the horizontal scan.
By modifying the 7 -segment digit of Fig. I slightly so the ends of each segment overlap the ends of each adjoining segment (see Fig. 2), they get a betterlooking digit. The character generator decodes BCD (Binary Coled Decimal) input data into segment control lines. These lines control the output of the logic gates that turn the electron beam
on and off when necessary. This type of character generator does not need a memory

Figure 3-a shows how both the horizontal and vertical scanning times allotted for each igit are divided into eight time slots. Each vertical time slot consists of an even number of horizontal scan lines. The first two horizontal time slots and the first vertical time slot of each digit are always blank. The top, center and bottom horizontal segments occupy the third through the eighth horizontal time slots during the second, fifth, and eighth vertical time spots.

The left and right vertical segments occupy the third, and eighth horizontal time slots. The left and right vertical segments occupy the second through the fifth and the fifth through the eighth vertical time slots, with overlap during the fifith time slot

The display circuit was designed to also display the time-of-day along with the channel number. The time data is supplied from an external clock source (optional add-on to the GR-2000). As shown in Fig. 3-b, the time data fills eight digit spaces and is displayed as shown below the channel number. A

four-digit time display mone is shown in Fig. 3-c.

A block diagram of the CMOS display IC used in the GR-2000 is shown in Fig. 4. Horizontal and vertical sync signals for the display circuit are derived from the horizontal and vertical retrace pulses of the TV receiver. Display position is determined by the adjustable multivibrators, which are triggered by the horizontal and vertical sync signals. The set owner can position the display to any part of the screen by varying the delay periods with two potentiometers.

Fig. 5 is a block diagram of the entire display system including the clock and showing the connections to the TV re-
ceiver. The display circuit which is made up of the 28 -pin CMOS IC and its associated circuitiry is mounted on a single-sided printed circuit board. The 28 -pin clock chip and its associated circuitry plus time-sel switches requires only a few more square inches of space.
The sync vertical pulses are gated into the display circuit for an adjustable period of time that is variable from sevcral seconds to as much as half a minute or more each time the channel is changed or when the recall switch (part of the volume-control curcuit) is activated.
The digital output signal from the display circuit is coupled to a display
driver transistor amplitier which parallels the luminance driver stage. The display signal thus enters the video stages as a luminance or black-andWhite signal that forms a white display on the screen. Display driver current is adjustable, controlling display brightness without affecting the program. The display is superimposed over the video signal.

A dot pattern for use when converging the color receiver can be substituted for the display signal by throwing a switch in front of the display driver stage (nornal-bots). The dot generator itself, shown in Fig. 6, uses the same

Train at home on NTS equipment like this:

NTS Audio Electronics Servicing

Know tweeters, woofers and baffles - sound distortion, amplification and control - public address and music systems. Kits you build and keep include Heath 60-watt stereo re-Volt-Ohmmeter, digital meter, in-circuit transistor tester, solid-state pocket radio.
Digital Multimeter

60-Watt Stereo Receiver and Twin Speakers

NTS color and b\&w tv servicing

Build the largest and most advanced solid-state color TV. A 315 sq . in. ultra-rectangular matrix picture tube, Varactor Diode Tuner, Electronic Character Generator and more. Or build B\&W TV with cabinet. Both TV's feature "instant on" Automatic Fine Tuning, solid-state design, and more. Other kits you build and keep: Solid-State Pocket Radio, Troubleshooter, AM/SW Radio, Volt-Ohmmeter, Color Bar/Dot Generator, Electronic Tube and Transistor Tester, TV Vector Moritor Scope and 5 -inch Oscilloscope. Send card or coupon for all new color catalog and full details today.
 exclusive! Duplicates circuit technology of giant computers in industry, do your own wiring, patch-cording, assembly. Other kits you build and keep: 5 -inch wide-band solid-state oscilloscope, FET Volt-Ohmmeter, Electro-Lab.

NTS Electronic Communications

Earn your FCC First-Class Radio-Telephone License. Prepare for the test by building your own amateur phone 2-Meter FM Transceiver. NTS gives you the exact skills the FCC requires. Other kits you build and keep: fully transistorized Volt-Ohmmeter and regulated power supply.

Project Method Training - 'heart" of the NTS system.

NTS Project Method Training is a better way to learn electronics. With easy-to-follow lessons, comprehensive kit manuals, large fold-out charts and more, you'll build advanced equipment while you learn electronics principles and applications. You'll learn how components work, why they work, what to do when they don't work. In short, you'll use your mind and your hands to develop ability and confidence. This is why the NTS Project Method is such an invaluable part of your program.

NTS gives you confidence-building extras!

- Job Getting Manual
- Advice On Starting A Business
- Answers To On-The-Job Questions
- Illustrated Electronics Dictionary
- Mechanics \& Science Bulletins

NATIONAL SCHOOLS

Technical-Trade Training Since 1905 Resident \& Home Study Schools
4000 SOUTH FIGUEROA ST., LOS ANGELES, CA. 90037

Feel at home on jobs like these:

 NTS builds your confidence with more solid training in Solid-State

 NTS builds your confidence with more solid training in Solid-State}

NTS Training on professional solid-state equipment prepares you for many careers - in many consumer, commercial and industrial fields. If television is your chosen field, you could join a first class TV repair center, start a shop of your own, or specialize in industrial applications of television such as security system installation. And other electronic fields are continuing to grow, revolutionizing industry and communications, even reshaping our own lives. Opportunities are opening in home entertainment areas, commercial audio systems, mobile communications,
computer servicing, industrial controls and many other service technician areas. Yes, this is truly "The Age of Electronics." Your NTS training and the equipment you receive prepare you for these exciting careers wherever electronic technicians are needed. Start now! Build your confidence along with new skills in electronics. You may start earning extra money even before you graduate! Check your course on the card or coupon and mail today! No obligation. No salesman will call.

Master Technician: Comm Anications Electronics

Master Technician:
Industrial Electronics

Master Technician:
Home Entertainment Electronics

Classroom training at Los Angeles
You can take classroom training at Los Angeles in sunny Southern California. NTS occupies a city block with over a milliori dollars in facilities devoted exclusively to technical training. Check box in coupon.

Master Technician:
Computer Electronics

Approved for Veteran Training

Accredited Member: Nationa: Association of Trade and Technical Schools; National Home Study Council.

Phonograph records and playback equipment have rebut their specifications have become more Requirements for discrete 4-channel CD-4

BY LEN FELDMAN
CONTRIBUTING HIGH-FIDELITY EDITOR

Thf discrete four-channet reccord has arrived upon the hi-fi scene and one manufacturer after another is offering hardware with which to reproduce these records in home music systems. At last count, nearly a score of receivers have built-in CD-4 demodalator circuitry or at least a pocket or slot into which such circuitry can he added in the form of a plug-in module. Early claims of phono cartridge manufacturers to the effect that "their" hest stereo pickups conld successfully track the complex groove information in CD-4 discs have largely been abandoned, and a new generation of "special" CD-4 cartridges is already on dealers' shelves. At least a half dozen separate CD-4 demodılator accessory boxes (self-powered and "easily connected" to existing equipment are also a vailable.

It was the instruction manual that accompanied one of these demodulators that prompted me to investigate some of the limitations and special requirements of the new medium. The booklet that accompanies JVC's model 4DD-5 demodulator states:

1. In connecting turntable to demodwator, low-capacitance cords must be used. These cords are normally supplied with the demodulator . . Proper four-chamel performance cannot be guarameed if another type of cord is used.

Other literature we had read concerning this subject generally settled in on a value of 100 pF as the maximum capacitance of the cable that could be tolerated in a CD-4 setup. The cables suppled with the JVC unit were measured and found to have a lotal capacitance (per side) of 45 pF . The length of these connecting cables is just over 1 meter, or about 40 inches, which means that it has a capacitance of 13.5 pF per foot. This is an extremely low value of capacitance compared with ordinary shielded cable normally used for connecting between turntable jacks and preamplifier input. Typical values of such cable run anyw here from 35 pF to 50 pF per foot. In the case of a three-foot cable having the higher capacifance value, that means that its capacitance would exceed the recommended " maximum" of 100 pF .

The fact is that not everyone will use a separate demodulator for discrete dise playback as demodulator circuitry becomes an integral part of receivers and amplifiers. and ordinary shielded catble is likely to be used. If no consideration is given to the total capacitive load seen by the phono cartridge. results obtained by the listener may prove totally unsatisfactory.

FIG. 1-TOTAL CAPACITANCE loading a CD-4 cartridge consists of three separate capacitive components.

Other loading effects

While some stress has been placed on cahle capacitance by many manufacturers, litte or nothing has heen said about other parameters which govern overall frequency response and input level-as applied to the actual input of the demodulator circuitry. The diagram of Fig. I shows at least three separate capacitive loading effects that can affect performance. The internal wiring from the terminals of the changer or turntable (up through the pickup arm and to the cartridge terminals) also has measurable parallel capacitance, as does the input circuitry of the demodulator itself.

We measured the internal wiring capacitance of three popular automatic turntables (all of them selling for around $\$ 200.00$ or more) and found that internal wiring capacitance ranged from a low of 23 pF per channel to a high of 135 pF per channel. In theory, at least. the changer having the 135 pF internal capacitance would not be expected to work with CD-4 no matter how short the external shielded cables! In fact. this did not prove to be the case

Equivalent circuit

A magnetic cartridge can be viewed as the equivalent circuit shown in Fig. 2. While this schematic is a simplified representation of the electrical equivalent circuit of a magnetic pickup. it illustrates the action of the loading capacitance in altering tiequency response. With capacitance of the

FIG. 2-ELECTRICAL EQUIVALENT of a magnetic phono cartridge.

FIG. 3-EXTERNAL LOAD on cartridge acts as a half-section low-pass filter.
three contributing components added, as shown in Fig. 3, a familiar half-section lowpass filter is formed. consisting of the induc tance of the cartridge and the external capacitances. Frequency response of this "filter" will depend in part upon the terminating load resistance and the source resistance.
Most of the new CD-4 cartridges are designed to be loaded by a resistive value of from 47 K -ohms to 100 K -ohms. If we presume that the new stylus assemblies and physical parameters of the new cartridges result in a frequency response which is essentially "flat" to $45 \mathrm{kH} /$ or higher (a requirement of the new CD-4 discs). any 'roll-off" in response experienced in athal use must be a function of the loading capacitance in the circuit of Fig. 3

In setting up a CD-4 playback system there are of course, other variables. For example, not all of the new cartridges produce the same nominal output for a given stylus velocity at 45 kHz (or for that matter. even at mid-band audio frequencies). If a given cartridge has a nominal output of 3 mV and is used with a demodulator having a carrier sensitivity of 1 mV . frequency attenuation could he as much as 10 dB at 45 kHz and perfect results might still be obtained. On the other hand, a cartridge having a nominal output of only 1.5 mV might he down only 4 dB from that nominal output and already he helow the sensitivity threshold of the given demodulator circuitry.

IVC , the originators of the CD + record. make a series of frequency test records. We used them to determine performance characteristics of four different CD-4 cartridges. using two different record changer set-ups. The first record changer used had an internal capacitance (per channel) of only 23 pF . To this, we added the special lowcapacitance cable supplied with the separate JVC demodulator. The second record changer was one which had an internal wiring capacitance of about 135 pF . To make matters still worse. we added to this a typical fou-foot cable having a total capacitance of 130 pF . The total capacitance loading the cartridges (exclusive of the input capacitance of the demodulator circuitry) was therefore 265 pF -an extreme case, to be sure. The first cartridge to be checked was JVC's own model 4MD-20X. Its nominat frequency response is plotted in Fig. 4 and is seen to be essentially llat to about 50 kHz . Nominal output for $3.54 \mathrm{~cm} / \mathrm{sec}$ stylus velocity at 1 kHz was measured as 1.9 mV . With the low-capacitance set-up. ontput at 40 kHz had dropped to 0.76 mV , a drop of approximately $X \mathrm{~dB}$. Using the inordinately high-capacitive loading. a total drop of 13

the problems and the promise

mained outwardly much the same through the years stringent with each technical advancement.
 players are especially rigorous as you'll see

dB was noted. resulting in an output of 0.42 mV al 40 kHz . Overall frequency response for the ex conditions is plotted in Fig. 5.

FIG. 4-UNLOADED FREQUENCY RESPONSE of JVC model $4 \mathrm{MD}-20 X$ CD-4 cartridge.

FIG. 5-EFFECT OF DIFFERENT capacitive loading on JVC cartridge.

AUDIOTECHNICA AT-15S
STYLUS VELOCITY $=3.54 \mathrm{CM} / \mathrm{SEC}$
$\mathrm{OdB}=2.3 \mathrm{MV}$

FREQUENCY
FIG. 6-EFFECT OF DIFFERENT capacitive loading on Audio Techinca cartridge.

CD-4 calibration record

JVC supplies a +5 -rpm. 7 " lest record with all is demodulators. In atdition to providing two hards of wathle tone for left and right separation adjustment, there is a hand of high-modulation 400 Hz with superimposed $30 \mathrm{kH} /$ carrier fiequencies designed to help you adjus! the "carrier level" control which comes with every demodalator circuit (whether separate or huilt in). The theory here is that the circuit's 30 kHz carrier gain must be variable to optinme results for different cartridges and their oulputs

Instructions tell the user to choose that setting which results in least distortion in the andibly reprodaced 400 Hz tone. The instructions further state that even if distortion cannot he eliminated entirely. this does not prectude proper reprodaction of quadtadises since their modulation is not likely to be as gleat as that deliherately col into the test hand. In the case of the JVC cartridge (and the similarly constructed Audio Technical model AT-15S, whose responses under hoth sets of rest conditions are plotted in Fig. 6). distortion could be eliminated with the low capacitance changer and cable setup, and reproduction was line when playing an assortment of CD-4 musical records. The same held true for the Pichering model UV-15/2400() CD-4 cartridge (whose ont putsare plotted in Fig. 7) and an experimental moktel received from Shure Brothers (not yel released as a production cartridge) whose outputs are plotted in Fig. δ.

Note. however. that the output of these last tho cartridges at $40 \mathrm{kH} /$ was significantly lower than that obtained with the JVC and Audio Technica models. When conventional cathles (about 70 pF) were suhotituted for the special low-capacitance cathes. the Pickering could no longer be adjusted for PICKERING UV-15/24000 STYLUS VELOCITY $=3.54 \mathrm{CM} / \mathrm{SEC}$ $\mathrm{OdB}=1.75 \mathrm{MV}$

FREQUENCY
FIG. 7-USING A PICKERING cartridge here you can see the effect of different capacitive loads.
"no distortion" reproduction of the test tone on the JVC test record. Nevertheless. reproduced music from typically recorded quadradises still sounded fine under these conditions.

SHURE BROS SAMPLE
STYLUS VELOCITY $=3.54 \mathrm{CM} / \mathrm{SEC}$
$\mathrm{OdB}=1.75 \mathrm{MV}$

FREOUENCY
FIG. 8-EXPERIMENT SHURE CARTRIDGE is also affected by changes in capacitive load, as shown here.

When the extreme conditions of leading capacitance were substituted none of the four cartridges could reproduce the 400 Hz tone from the test record with "on distortion." Under these conditions, however. the JVC cartridge continted to play acceptathly while the other three hegan to e thibit break-up caused by "carrier drop-oll." Based upon the curves ohtained for all four cartridges. this would indicate that the lectst amplitude of carrier signal (at 40 kHz) required by the IVC demodulator, when sel for maximum carrier gain. is something more than 0.4 mV . The other thee carridges had outputs of $0.2 \mathrm{mV}, 0.2 \mathrm{mV}$ and 0.4 mV at 40 kHz under these highcapacitance loading conditions. Of course. all the tests were conducted using the same IVC separate demodulator. Other bater designs may well have a lower inpul sensitivity requirement and might therefore he less subject to the cartier drop-out experienced in our deliberately severe tests

On the other hand, many records may contain higher orders of audio modulation than did our ferm musical examples and such records may well catuse aldible distortion of reprodaced programs. if not actual dropouts and reversion to "two channel" operation.
The conclasions that can be reached from all these measurements are
I. Factors determining maximum permissible external cable capacitance include intermal changer wiring capaciance. cartridge output level. and input sensitivity of the partieular demodalator.
2. The nominal "maximum" capacitance of $1(0) \mathrm{pF}$ suggested by many manufacturers of CD-4 hardware seems a bit conservative, probably deliberitely so to provide some margin for error
3. In any event, all other things being equal. users should strive for mimimum catble capacitance-even if this means shorter distances between the furntable and the demodulator input-a small price to pay for proper reproduction of this new breed of four-channel dise.

Tracking force

All of the cartridges tested in our experiments tracked best at forces of 2 grams or even slightly higher. If this tends to unset the audiophile who has been conditioned to tracking forces of 1 gram , and even less with the best of the stereo pickips, a moment's retlection (and a glance at the cross-section diagrams of Fig. 9) should put all fears to

FIG. 9-SHIBATA SHAPED STYLUS engages more surface area of record groove wall, reducing tracking pressure.
rest. The stylus tip shape used in all of the new CD-4 cartridges is neither elliptical nor conical. Whether you call it a Shibata stylus (as mosi Japanese manufacturers do) or a Quadrahedral shape (a name coined by Pickering), the principles involved are the same. Surface contact between the stylus edges and the two groove walls is greatly increased compared with the surface contact achieved with conical or even elliptical styli. Recond wear is a function of stylus pressure (measured in grams or pounds per syuare inch), not overall downward force
(measured simply in grams or pounds or ounces). If the surface dimension engaged by the new-shaped styli is double that of earlier types (and it almost is). that would mean that the pressure per surface area is one fowrth its previous value. In other words,? grams of tracking force with a Shibata stylus creates no more pressure than a conventional stylus with 0.5 grams downward force applied.

Anti-skating and vertical alignment

In the past. many experimenters have "written off" anti-skating adjustments on atutomatic turntables as a refinement which may perhaps reduce record wear over the long term, but which produce no audible improvement regardless of correct adjustment, incorrect adjustment or complete atbsence from the scene. The experiments with the few CD-4 cartridges outlined above certainly disprove this generalization when it comes to discrete discs. Incorrect antiskating adjustment or no compensation for the inward pull of the tone arm resulted in very audible distortion and even loss of decoding during certain musical passages of some of the records we played. If you have ever doubted the need for this calibration on your record changer or turntable, try doing without this feature when you listen to your first CD-4 records and you'll quickly beconte convinced of its importance.

In stereo record reproduction, angular displacement of the stylus from trwe perpendicular resulted in rapid loss of channel separation (or increase in cross-talk). A 5 -degree error in verticality of the cartridge and stylus results in separation which is fe duced to about I? dB at I kHz. Many people ignored this critical adjustment, probably because !? dB of stereo separation actually sounds like pretty good stereo. In the case of discrete four-channel records departure from verticality of the stylus assembly -even by a few degrees-will lead to com-
plete failure of the demodulator to properly decode one groove wall. Thus, left-front and left-back channels may still sound right while all right information is combined in the right-front speaker or vice-versat. In really extreme cases of misalignment, you may lose decoding altogether and the dise will be reproduced like a conventional stereo record

The promise

If all of what we ve said so far tends to discourage your "conversion" 10 the discrete record format, take heart! The situdtion is not unlike that which prevailed when stereo FM was first introduced. (The technology is really quite similar, what with "main channel" information and superatudible carrier information all mixed together both in the stereo FM composite signal and in the groove modulation of a CD-4 record.) Early stereo FM decoders provided poor separation, tended to drift out of adjustment and reproduced stereo FM programs with more noise than the system justified. Yet today, we take the stereo multiplex circuits in our tuners and receivers pretty much for granted and expect them to work as well ats other parts of our hi-fi systems-and they do.

Demodulators will become more sensitive and less critical to atjust. Already announced is a new IC chip, develoned bv inventor Lou Dorren and about to be distributed by Panasonic for manufacturers" general use in CD-4 equipment.) The software is getting better atl the time. too, with lower noise levels. increased playing time and higher output levels showing up on late releases. Cartridges will get beiter, too, just as they did when stereo dises first appeared. In the meanwhile, if you ve got the urge to hear this latest sonic misacle, a bit of care in the areas we ve discussed will result in a discrete four-channel system of which you can be justly proud.

R-E

REACT approves 224-225 MHz

 CB-wants emergency channel in bandReplying to an FCC request for comments, REACT, a voluntary organization of Citizens band operators for Emergency Communication, 'heartily favors the allocation of additional spectrum for the purpose for which the Citizens band was established originally," and therefore "favors the assignment of 224 to 225 MHz for 40 additional channels for a new Citizens Radio Service," a proposal which was the subject of an FCC hearing.

REACT is an organization of some 40,000 Citizens Banders divided into 800 teams throughout the country. They maintain a watch (an ear) on channel 9 of the Citizens band, respond to emergency calls, provide two-way communications in local emergencies, and often offer direct physical assistance and take part in action to alleviate or avert effects of emergencies.

The communication to the FCC was the result of a mail canvass of the organization's 800 teams. A number of questions were asked, and among those replying, 93 per cent felt that a new additional emergency channel, similar to the present channel 9, should be set aside for emergency communication on the prop-

posed new band

Signed by Henry B. Kreer, National Director, and Gerald H. Reese, Managing Director of REACT, the comments conclude: "We view the allocation of this new Class E service as a progressive and justifiable recognition by the Commission of the right of individuals to utilize the radio spectrum, a natural resource, for individual, personal, and business communications.

JACK KELLY, C.E.T. (left), president of the Arizona State Electronics Association, receives the "Outstanding State Association President" plaque from NEA Awards Chairman Everett Pershing (center) at the Kansas City Convention. His wife, Wanda Kelly (right) received an NEA Special Recognition Award for her help on State and National schools and with the Arizona State Association.

WITH SPECIAL ELECTRONIC EQUIPMENT to track down and solve problems of auto radio reception, this GMC Vantura is being sent by Delco Electronics to areas where poor or spotty reception has been reported. In New York, it was first driven near the Empire State Building, from which 15 radio signals are broadcast. The strength of each signal was measured with a spectrum analyzer that has a range extending from below the broadcast band to 1.2 GHz . The van was then driven to various spots in the city (such as the one in the photo) and the signal strengths compared with the ones previously measured. At the same time, a four-channel tape recorder records the actual sounds on two of its channels. The spectrum analyzer display is recorded on the other two, one of which receives its input from the vertical, and the other from the horizontal, outputs of the analyzer. The recordings are taken to Delco headquarters at Kokomo, for analysis.

THE GYRATOR an IC inductor

Until the fairly recent development of this simulated inductor, the inherent bulk of even the smallest inductor has excluded inductance from all microelectronics except hybrid LSI's.

by STEVE LECKERTS

THERE IS A SEAIEID CONTAINFR THE MYIHical black box, sitting in front of us with two terminals coming out of the top. Our problem is to nondestructively determine what electrical component is inside. When we connect a constant-amplitude current source to the terminals and varying the frequency we find that as the frequency increases the voltage across the terminals decreases with a mathematical pattern. The voltage decreases exactly inversely with frequency. To complete the characterization we compare the phases of the input and output currents and see that the phase of the voltage lags the current by 90° irrespective of frequency. Our observations can be summed up by the mathematical expression $Z_{1}=V_{1} / I_{1}=1 / 2 \pi$ jfK where K is a positive constant and j is a mathematical ruse to show the 90° phase shift. If K is replaced by a C the expression is the same as the impedance of a capacitor of value C and we identify the hidden component as a capacitor

Now take a second black box with two sets of terminals and connect the output terminals to those of the first hox. The second box contains an active tansistor circuit. It does not hold any energy-storing components, specifically capacitors and inductors. The box transforms the output current to input voltage and the output voltage to input current. Looking into the input terminals we expect to see the response of the first box with the roles of voltage and current interchanged. We repeat our measurements and find that now the voltage increases directly with frequency. Also the phase relationship has reversed with the voltage now leading the current by 90°. The expression for this measurement is written
$Z_{2}=\operatorname{Vin} 2 / 1 \operatorname{in} 2=2 \pi j f C$.
where C is the value of the capacitor in the first black box. Well this new two-box hookup behaves exacily like an inductor. The only thing unusual about the expression is that in place of the I that would normally be found is the value of the real capacitor C.

FIG. 1-BASIC GYRATOR uses two transconductance amplifiers as shown.

Note that we end up with $Z_{2}=1 / Z_{1}$ which is not too surprising since impedance is the ratio of voltage to current and we have reversed them. By interchanging the roles of cunent and voltage we have simulated an inductor. This second black box is a gyrator, so called because it is electrically analagous to the mechanical gyroscope

The gyrator

Fig. I shows the basic form of the gyrator with two transconductance amplifiers in a negative feedback loop. The amplitiers have both high input and output impedances. For a voltage input of vin amplifier I has a current output i_{1} equal to $\mathrm{gm}_{\mathrm{m}} \mathrm{v}_{1}$. We use the fiamiliar transconductance notation gm since it is the ratio of current to voltage. Likewise the output of amplifier 2 , iin is $g_{m} v_{2}$.
This amplifier has a negative sign in front of its current gain indicating a phase reversal or 180° phase shift through it. If we load the output of amplifier 1 with a capacitor we have a situation where the input current in is transformed into the capacitor voltage v_{2} and the input voltage v, is transformed into the capacitor current i_{2}. As we have explained this is precisely what we want and will result in an indictive looking input impedance. For those of you who would like to indulge in some algebra follow the next few equations:
i in $=\mathrm{gm}_{\mathrm{m}_{2}}=\mathrm{g}_{\mathrm{n}} \mathrm{v}_{\mathrm{c}}$
$i_{\text {out }}=-\mathrm{gm}_{\mathrm{m}} \mathrm{inn}=\mathrm{i}_{\mathrm{c}}$ or $v_{\mathrm{in}}=-\mathrm{i}_{\mathrm{c}} / \mathrm{gm}_{\mathrm{m}}$ now $\mathrm{i}_{\mathrm{c}}=\mathrm{v}_{\mathrm{c}} / \mathrm{Z}_{\mathrm{C}}=\mathrm{v}_{\mathrm{c}} /(1 / 2 \pi \mathrm{mf} \mathrm{C})=-2 \pi \mathrm{jf} \mathrm{v}_{\mathrm{C}}$ and the input impedance $Z_{\mathrm{in}}=v_{\text {in }} / \mathrm{i}_{\mathrm{in}}$

$$
\frac{-i c / g m}{g m^{v} c}=\frac{2 \pi j f C v c / g m}{g m^{2} c}=\frac{2 \pi j f C}{g m^{2}}
$$

The input impedance therefore looks like an inductor with a simulated inductance equal to $\mathrm{C} / \mathrm{gm}^{2}$. We have assumed the gm of both amplifiers to be identical in magnitude. If they are not the expression would be $\mathrm{C} / \mathrm{gm}_{1} \mathrm{gm}_{2}$.

A circuit proposed to realize this basic gyrator configuration on an IC is drawn in

FIG. 2-IC GYRATOR CIRCUIT has p-channel junction FET's for high Q.

Fig. 2. Each transconductance amplifier has two FET's and two bipolar transistors. High input impedance and circuit Q is assured by the input p-channel junction FET and the high output impedance results since the output is at the junction of a FET drain and bipolar collector. The circuit shown in Fig. 3 is interesting ${ }^{2}$ because it is balanced using two differential amplifiers. One amplifier uses npn's and the other pnp's making the biasing easy, using direct connections between the corresponding output collectors and input bases.

This circuit is particularly convenient since it simulates a floating inductance completely unrestrained by a ground connection. If desired, either one of the input terminals can be grounded.

Next. Fig. 4 is an extremely simple circuit ${ }^{3}$ that uses an RC combination and a single FET to simulate inductance. The FET corresponds directly to amplifier I in the original scheme of Fig. I. Instead of the second amplifier a pseudo-current source is created using a large resistor R. Of course this is an approximation to a higher impedance active current source and we must expect a compromise in the Q of the resulting

FIG. 3-BALANCED GYRATOR floating inductor.

FIG. 4-SIMPLE GYRATOR uses high resistance to approximate transconductance amplifier.
inductance. In Fig. 5 transconductance amplifiers ${ }^{4}$ are constructed by combining voltage and current amplifiers. The gain blocks are either a positive or negative unity gain current amplifier driven by unity gain voltage amplifiers. The current and voltage amplitiers are interconnected with a series resistor which sets the transconductance equal to the inverse of the resistor. Presenting an essentially zero input resistance, the

FIG. 5-GYRATOR WITH UNITY GAIN. Voltage and current amplifiers combined to form transconductance amplifiers.
current amplifier conducts equal input and output currents. These two currents are then equal to the input voltage divided by the resistance.

Other impedance converters

A Japanese manufacturer has recently announced an integrated circuit which is different from the pure gyrators we have been describing. Not only does its input impedance look inductive but it also generates a negative resistance component. Positive feedback in the manner of a O multiplier must be added to the negative feedback used for impedance transformation. Mitsumi says the small chip it has named Semicon L is a replacement for the large coils used in radio and TV receivers.

Figure 6 is the schematic for the device which is further simplified by replacing Q2

FIG. 6-MITSUMI'S SEMICON L impedance converter is ditfused onto a small monolythic integrated circuit.
and Q3 with a single pnp transistor. The composite configuration of $Q 2$ and $Q 3$ is commonly used by IC manufacturers to compensate for the low beta of the lateral pnp's they can produce compatable with their normal npn processing. The collector current of Q2 feeds Q3's base producing a beta roughly equal to the product of the two individual device hetas. Q3's collector returned to Q2's emitter completes a negative feedback path lowering the impedance at this composite emitter terminal. The emitter of $Q 3$ acts as the collector of the composite device: Q2's base as the base. and the emitter-base junction as the emitter.

While the simplified schematic of Fig. 7

FIG. 7-SIMPLIFICATION OF FIG. 6 by redrawing composite Q2, Q3 configuration as single equivalent device.
appears elementary. it is actually quite difficult to analyze and very careful assumptions must be made to produce meaningful results.

Each of the two transistors in Fig. 7 has its collector connected to the other device's hase. The two 180° hase to collector phase shifts add to give 360° or 0° around the loop. which is positive feedback. The input impedance is of the form $\operatorname{Zin}=-\mathrm{A} Z_{1}+\mathrm{B} / Z_{2}$ where \mathbf{A} and \mathbf{B} are real positive numbers. Z_{1} is a resistor and Z_{2} a capacitor giving an input impedance that is a negative resistance in series with an inductance. Inductance values in the range of 1 MH to 5 H with Q 's between 50 and 100 are claimed with fiequency capability to 15 MHz .

Besides synthesizing inductors with gyrators, complete filter designs can be hased around them. Figure 8 is the design of such a low pass fitter. It is a fifth-degree Chehyschev ypes with a 0.2 dB in band ripple and a cutoff frequency of 3.4 kHz . Fig. 9 is the schematic of a gylator suggested by the proponent of this filter technique. QI. Q2 and Q5, (Q6 are Darlington connected amplifiers for high input impedance by virtue of the multiplication of the device betas. Q 4 and $Q 8$ are constant-current sources which combine with $Q 3$ and $Q 7$ respectively to form high impedance current outputs. The constant-current source enables current to flow into or out of the gyator terminals

FIG. 9-GYRATOR WITH BIDIRECTIONAL current output.
which is necessary to charge or discharge circuit capacitances. When Q3 is cutoff current will flow out of terminal 2 from constant current source Q4. When Q3 conducis a current equal to that flowing in (24 there will he a net zero out put current from terminal 2 . If Q 3 conducis a larger current than can be supplied by $Q 4$ there must be a net current flow into the terminal.

Some engineers say that making a negative impedance converter to synthesize negative capacitors is easier than building a stable usable gyrator. Not only are we concerned with the synthesis of inductance or inductive circuitry but important secondary criteria mast be carefully examined. Whenever transistor circuitry replaces passive devices additional noise sources are injected. The added noise has to he kept at a minimum so the product performance is not degraded. Dynamic range is another key specification. Active circuitry has tïnite signal excursions that can be handled before overloading takes place, generally at a level considerably lower than could be handled by the physical counterpart. Temperature stability is also a vital consideration. In the final analysis the secondary characteristics are what makes one design superior to another.

Fig. 10 shows how a negative capacitance can be generated using a differential amplifier. The negative capacitance seen at the terminats is of value $2 / f C_{1} R_{3}$. The design of a 104 to 108 kHz telephone channel bandpass filtert using negative capacitance is given in Fig. 11.

We have demonstrated how inductive networks can he simulated with resistors and capacitors combined with feedhack amplifiers. With careful use of integrated cir-

FIG. 8--FIFTH DEGREE CHEBYSCHEV Iowpass gyrator filter.

FIG. 10-NEGATIVE IMPEDANCE CONVERTER looks like negative capacitor.

cuits and thick film techniques practical circuits can be put together. Products designed using gyrators and negative impedance converters (NIC's) may soon appear in our homes. As we found with the tunnel diode any one technique is not a panacea but another tool to be added to our stockpile. The gyrator simulated inductor will eventually replace those components where space is at a premium or where there will be a savings in cost either by a physical reduction in parts count or hy easing circuit adjustment using computer controlled laser or abrasive trimming.

FIG. 11-TELEPHONE CHANNEL bandpass fllter $L=1.523 \mathrm{mH}$. Capacitors in pF.

BIBLIOGRAPHY

EDN. Aug. 1. 70. P. 41. Nonolthic Gyrator Opens Way to Vicrafilters, R Howe

Electronic Produch April 70. F. © ${ }^{\text {x }}$. The Gyrator-a practical IC inductor. T I Batasch
-Procepdings of the IFEF. Dec. 70. I IW65. A Reaclance Circuin Derivation of the Gyrator. V.C. Hekimian
*Proscedines of the IELE. Nov. 70. p. 1871. High-0 Gyrator Circuit, R, I inggard

Vhestronics and Commumicursons in Japon. Vol 51-A. No 3. 1968 , RC Active Fillers Using Diwipative Gialunded Gyrators. T. Yanagiatua

* IEEE I Mormi of Solid Stutr Circioits. Vol sc-5. No. 7 June 1970. p. Ios Inducherless Bindmass Filters. H.i. Orchard and 1).1. Sheahan

equipment report

Pioneer R500 Speaker System

Circle 90 on reader service card the r 500 is the midole speaker system in Pioneer's R for retlex speaker line. In a bookshelf cabinet $1325 / 32$ inches wide by $241 / 32$ inches high by $12 \quad 1 / 16$ inches deep this 8 -ohm speaker system gives really impressive performance. It is an omen that speaker engineers are getting down to careful precise design using their drudgery reducing calculators and minicomputers and beginning to move out of the accoustic suspension age.

Rather than using the response smoothing and broadening techniques used in accoustically-loaded designs, the bass reflex is more analagous to a stagger-tuned amplifier where careful tuning of the entire system contributes to the performance of the final product. The speaker system is a mechanical network with mechanical reac-
tances and resistances. Converted to analagous electrical quantities the system can be analyzed by using highly developed electrical circuit analysis methods.

Mechanical phase shifts must be appreciated such as the elemental fact that the air in front and rear of the speaker cone or diaphragm is driven 180° out of phase. This is simply because the air in front of the membrane is being compressed as the air behind it is expanded. The resonances of the cabinet structures and partitions along with the effects of ducting common to the bass reflex. when combined with the responses of the speaker elements themselves produce a multi-pole tuning. Only perfected components combined with meticulous system and cabinet considerations can produce the performance level we have learned to expect. The composition of the sound deadening material lining the inner cabinet walls, must be given careful consideration since it will affect the time stability of the system's response. This all leads to a design which has a singular advan-tage-efficiency. It is not necessary to specify minimum power ratings in excess of ten watts to drive the system.

While we are not generally preoccupied with efficiency per se, there are a substantial number of highgrade limited-power amplifier owners to whom the bass reflex is obviously attractive. If a high-quality speaker system can be produced in a smaller than traditional volume, as is done here, we have a workable concept.

Pioneer's attempt to bring the re-
flex back to prominence in a bookshelf sized system is a great success. A 10 -inch cone woofer, 5 -inch midrange cone speaker and a horn tweeter are combined with crossover frequencies at 800 and 5200 Hz . For wide dispersion the speakers are not recessed but are flush mounted. Woofer design pivots around a FB (free-beating) cone paper with minimized coil inductance to reduce distortion and improve transient response. A concave center pole design is used with large ferrite magnets covered with pure copper caps.

The midrange cone is also an FB type where the fibers are beaten rather than cut to give a light strong structure. An aluminum metalized polyester resin diaphragm is used in the aluminum die-cast horn tweeter replacing the more conventional cone and dome tweeters. These highlights cannot be expected to reveal the esoteric considerations that result in the system's true worth, but the proof is in the listening.

By now you are aware of the deficiencies of looking at speakers by simply studying their response curves. but we will still give a few points for perspective. The response has a 4 dB peak around 500 Hz compared to 1 kHz . Response is down 25 dB at 20 $\mathrm{Hz}, 10 \mathrm{~dB}$ at $50 \mathrm{~Hz}, 0 \mathrm{~dB}$ at 10 kHz and 12 dB at 20 kHz .

Rated at 60 watts maximum input power and with a sensitivity of 91 dB / W the R 500 weighs 38 lb 9 oz . The oiled walnut enclosure is faced with an unusual split two-tone blue and black grill cloth.

CB CASEBOOK

by ANDREW J. MUELLER

Reasoning: When the audio amplifier tube is cut off under squelched conditions, any noise due to microphonics, shorts, leakage, etc., that is generated in it can be clearly heard through the speaker. The tube was checked and found to be OK but direct replacement solved the trouble.

Case 2:
Radio lights up the does not transmit or receive.

Common to: Metroteck Mustang

Reasoning: C1, the power supply electrolytic was found dried out. This caused the power supply to deliver only one half of the rated voltage. Replacement of C 1 restored the unit to normal operation.

Case 3: Receive is weak and distorted.

Common to: Jonson 110

Remedy: Replace D1.

Reasoning: D1, the anl diode was found to have broken in half due to fatigue. This broke the path of receiver audio from the detector to the af amplifier. A little audio did feed through due to circuit capacitance but it was distorted

Case 4:
Unit hums on receive and transmit when operated from 117 vac.

Common to: Heathkit GW-14.

Remedy: Replace Q1.

Reasoning: Q1, the power supply regulator transistor is shorted. This feeds about 25 volts instead of 12 volts to the radio. In addition, there is very little filtering being done so all of the power supply ripple is fed to the radio. This results in the ac hum that is heard on both transmit and receive.

IC's for electronic

 musicElectronic music is a fast-growing field with the synthesizer arousing the most interest among the avantgarde. Regardless of what you want in electronic music, IC's will simplify design and ease construction.

SLPPOSE YOU WFRF GOIVK; TO DI SIGN AND huild an electronic music synthesizer. \& pitch reference, an electronic organ a composer, a timbre genetator. or some entirely new instrument. What devices would you use? Where would you go for help?

While thereare a lew integrated circuits that are ohviously and specifically intended for musicuse, these are rare, uablly expensive in small quantities. and often hand to impossible to get. On the other hame. there are great heaping piles of differen IC' availate that don" even him they are good for music use. These of at least some of them, are widely availathle cheap. and. hest of all. many of the lates dramatically simplify things. doing an good and sometimes much better a joh than olker circuits did. In fact. some circuits are now atatathe that are almost had to believe-a very stable sine. square triangle VCO for $\$ 3$. a hex voltage-controlled amptifier for 51.80 : a tracking "glider" phase-lock-loop that works over a 2000 : 1 frequency range with out hamonic locking and costs under 55 : a simgle $/ C$ to generate all the equally tempered notes of one octave: and switches that handle analog or digital. one to N or N io one reversibly. for under \$2

Here's my selection of edew dozen or so integrated citcoits that are (1) cheap. (2) widely atvailathe, (3) appliathle to electronic music and (4) do a joh fat simpler or cheaper than older approaches. Table I lists all the manutacturers and their addresses All prices are approximate. Be sure to have good data sheets and application notes on hand hefore you try to use any integrated circuil.

One IC top octave generator

Most music is arranged into twelve-note 'qually tempered note groupings (take a look at a piano keyhoard). As you go up in
frequency one nctare, vou double tire quency on the thirternth note. The note spacing is NOT linear. it is exponantial. Each note is spaced from its neghbor hy $\sqrt[2]{2}$ or approximately 6%. There is no reasonahle waly to exactly generate aniltational number such as $\sqrt[2]{2}$, so you hase to approximate it the hest way you can. Usually you star withat or 2 megaherte cryatal and then divide down by some "magic" optimum series of numbers fofien 239-253 $268-2 \times 4-301-319-338-358-379-402$ 426-451) to get a good enough approsimat tion to the highest octave you cale logenerate. From here you pick up the rest of the notes with a simple string ot himary dividers.

The circuitry that hat ades the top octave is called a mop-octare generator. Many of these curcuits had been based on the GEM55s and GEM55h at pair ol hard-touse, hamber-to-get IC's that are now essentially ohsolete.

The Mostek MK5024P/AA is a one-chip.

single 15 -volt supply top-octave generator. Hook it up as in Fig. 1. You input a 2.000240 megahertz squarewave or sinewave of 15 volts amplitude, obtained from a crystal oscillator (for permanent tuning) or a variable oscillator (for vibrato, glides, or tuning to another instrument). You get thirteen outputs, appearing as square waves from C 8 at 4186.01 hertz 10 C9 at 8369.2 hertz. Cost is under $\$ 12$. This is admittedly a hit steep, but it is by far the cheapest route to go if you want all the notes at once.

If you only want one octave at a time, you can place a single binary divider hetween the oscillator and the top octave generator, rather than using 12 separate dividers.

Seven octaves at once

Once you have the top octave. you add binary dividers to get the rest. Again, there are several "music-only" divider IC's available, but none is as good, as casy to use, or as cheap as the RCA CD 4024 or Motorola MC14024 CMOS 7-stage dividers. Cost is around $\$ 3.50$. One IC is needed to produce seven octaves of a single note. Thus a top octave generator IC and twelve of the CD4024's will generate simultaneously all eight octaves or a total of 97 notes

Figure 2 shows the connections. Simply apply a voltage from $+310+18$ (best results

FIG. 2-DIVIDE BY 128 provides lower octaves for any note. a-Circuit for square waves. b-Adding resistors for sawtooth.

With +15) and input the top octave output. You get out seven new notes in octave steps. For instance, input A\#8 (A sharp, 8th octave), and you get out A \#7. A\#6, A\#5, A\#4, A\#3, A\#2, and A\#1. The outputs will all be square waves. Square waves only have odd harmonies present. You can convert these to sawtooth waveforms with virtually all harmonics present with a few resistors as shown as in Fig. 2-b. While the stairstep may not look quite like a saw tooth. analyze it and you'll find the first missing harmonic is the lfth, followed by the 32 nd and the 48 th, etc. .. Otherwise it is abso-
lutely identical to a linear ramp. Filtering is used to convert either the square or sawtooth outputs into familiar tone colors. For instance, the squate waves are often used for clarinet and stopped organ sounds: the sawtooth by itself has a good string sound, while bandpass filtering is easily added to a sawtooth to get a horn or reed output.

A tempo generator

How do you get a stable, cheap, widerange square wave oscillator that's good enough as a monophonic note generator, but also is usefin for rhythm and clocking, and easily drives TTL and CMOS to boot? With the Signefics 555 or Motorola MC 1555 of course. This \$1 IC can't be beat as a stable oscillator. Figure 3 -d shows details. You can vary the resistance from ith to 3.3 megohms, and make the capacitance anything you want above 500 pF or so. Output is usually a rectangular wave. If you need a square wave, make R2 much bigger than R 1 or else add a binary divider to square it up. Figure 3-b shows how you can huild a trig-

SIGNETICS
555
OR MOTOROLA MCI555

FIG. 3-USING THE 555. a-Astable, or rectangular wave generator. b-Monostable or pulse width generator.
gerable monostable or pulse generator out of the same circuit. This is useful for synthesizer envelope generation.

A voltage-controlled oscillator

Many synthesizer systems are hased on wollage controlled ascillators. Apply an input or control voltage. and you get an out put frequency which you use as a tone source Music VCO's have to be very stable to be useful. They also have to have a wide range. Ideally, they should respond in a log
manner. but a log converter is more often added to the input of the VCO as a separate circuit. VCO’s also should be able to put out a good looking sinewave for flute-like tones, as well as a square or triangle output. The Intersil 8038 does the whole job for under \$3. A "haseline" circuit is shown in Fig. 4 that should get you started. Control voltage ranges from the positive supply to three volts or so less. The sinewave can be adjusted to below 0.5% distortion easily.

FIG. 4-SIMPLE VCO using Intersil 8038.

A dual operational amplifier

A good " $741^{\prime \prime}$ style op-amp is essential for any electronic music circuit. An operational amplifier does at least three good things for you-it gives you controllable gain: it eliminates interaction and coupling between multiple inputs: and it gives you a versatile system gain block for active bandpass filters and things like this.
The Motorola MC1 158 and the Signetios 5558 are typical dual " $7+1$ " type circuits. Cost is around a dollar. The 5558 is in an eaty-to-use x-pin minidif package

Figure $5-11$ thous the voltage follower connection. It gives you unity gain, a very high input impedance, a low output impedance and does not invert the signal. Figure 5 -h is a voltage follower with gain. Figure $5-\mathrm{c}$ shows the inverting amplifier and mixer. The gain of each input is the ratio of its own input resistor to the feedtach resistor. The imput impedance equals the input resistor for any input, and the stomming point may he considered to be a virual gromid. There is no interaction between inputs or crosstalk problems possible in this circuit; further, you can scale or individually adjust each and every input to its own signal level inde-

ITT TCA350 ANALOG SHIFT REGISTER is 185 -stage bucket-brigade af delay line.
pendently, while the feedback resistor can be varied as a master gain control. Figure 5-d shows a good, high-Q bandpass filter circuit you can use to independently conirol

SIGNETICS 5558 TOP V:EW
$V=6$ TO 12 VOLTS TYPICAL

FIG. 5-A DUAL 741 STYLE OP AMP. a-voltage follower (high input Z, noninverting). b-Voltage follower with gain (high input Z, non inverting). c-Current summer or mixer input is at virtual ground, no crosstalk is possible). d-High-Q bandpass filter.
the Q (to 500). the gain. and the center frequency on. Use this for formant woicing circuits. sinewave recovery, and anywhere else jou might like to emphasize a natrow frequency band.
By the way. if you ate working all high frequency and high gain. the 741 style devices might not have enough handwidth to do the joh. If you need only a little bit more. try the Motorola MC1741S: for a whole bunch more bandwidth, go to the more expensive National LM3F

Six keyers at once

At the very least. music notes must he smoothly turned off and on without any key clicks or thumps. It's even better to be alle
to instantly vary the gain of the note so you can have complete control of attack, tallback, sustain. decay, snubbing, and perhaps even an echo. To do this, you need something that will behave an an electrically variable resistor. The circuit in called akever, an amalog gate. or a woltage-controlled amplitier.

There are lots of had ways to do this job What you have is some circuit that is essenbally transparent to the notes fed through it-it simply varies gain and nothing more You must control the gain simoothly and do so equally well on the positive and negative portions of the envelope. Above all. you cannot let any portion of the envelope or control signal aprear as an oupur, for this gives you a loud thumping.

Diodes have traditionally been used in organ circuits. but they thump, introduce distortion, and have a limited dynamic range
An ohvious choice is an integrated circuil four-quadrant multiplier-see below-, but these are far too expensive to use dozens at a time. Another possibility is an electronically controlled gain block such as the Motorola MFC6040, but it has too much gain for many applications.

$<+4=$ OFF	LIMIT INPUT TO
$>+8=$ ON	100 MV FROM
+4 TO LINEAR CONTROL	
$+8 \mathrm{~V}=$ RANGE	

FIG. 6-HIGH-QUALITY HIGH-PERFORMANCE hex keyer or VCA costs only $30 \$$ per note. a-n-channel transistor as electrically variable gain control or keyer. b-CD4049 converted to six n-channel transistors.

The simplest good envelope keyer you can use is a single N -channel MOS transistor with some drain-to-gate feedhack resistance. Figure 6 -a shows the circuit. This gives you a linearly variable resistor. electronically controllable, and smoothly handles up to 10 volts of analog sigmal in either direction if the substrate lead is floated. Control voltage ranges from 4 or less for full otf, up to 8 or more for full on: in between youget a good lincar control range. For envelope and audio frequencies. There is absolutely zerofeed through of the control signal. As a honus, the control input looks into a high impedance that lets you use a small capacitor for the decay portion of the eycle. One typical discrete device is the Motorola $2 \mathrm{~N}+351$. At $\$ 2$ or so , the cost is far cheaper than at multiplier. but still a hit steep if you use 97 of them at once.

Once again. it`s digital CMOS logic to the rescue. A very few CMOS IC's can have their supply shorted to ground and thus disabling all the P-type transistors in the package. This leaves you with a block of N-channel MOS ransistors that are ideal for gain control. You can get two and possibly three in the CD4007 (RCA) or the MCl4007 (Motorola) devices in a dollar package. Most of the other devices, particularly the CD4009 and C D4010, have protective diodes aranged in such a way that you cant do this. The diodes are differenty arranged in a new device-CD4049 (RCA) and MC 14049 (Motorola). With this package. you get six voltage controlled amplitiers in a single infegrated circuit. Cost now is around 350 per amplitier. but this will drop to around 10 e per amplifer shorty
Figure b-h shows a full proportional control system with complete, thump fiee. confrol of attack, sustain. and decity
Note that in both circuits, the package gromud and positibe terminals are tied tosether and form the outpur. The traditiomal inverter" "outputs" are the signal or timbre input and the raditional inverter "inputs "reccive the envelope commands. ? voles or less is off: ahove 6 volts is on: inbetween you get a smooth control range. Best input signals atre less than 100 millivalts high and from a 300 -ohm or less source impedance. The op-amp builds this back up to a volt or two output, eliminates crosstalk. and prevents negative feedback from reaching the gate circuit.

An analog quad switch and sample-hold

While you are looking at CMOS. check out the RCA CD4016 or the Motorota MC 14016. Either of these has four separate analog offon sivitches that you can apply up to ten volts of peak-to-peak signal to. You use the same circuit digitally. frontwards as a one line to four line distributor. back watis as at tour line to one line selector. or as four separate switches. Unlike virtually all other 1 C logic lamilies. the signals can go through the switch in either direction.

Figure 7-i shows the IC. Figure 7-h is a digital or analog one-to-four distributor Figure $7-\mathrm{c}$ is a digital or analog tour-to-one selector. Finally Fig. 7 -d shows how you can build a sample-hold amplitien with one quarter of this package. a good Mylar capacitor. and an operational amplifier. Sample-holds are useful in synthesizers for remembering what frequency a note was after a key is released so the decaveycle can

a

R PROVIDES 741 INPUT
CURRENT. SET TO O DROOP AT 0 VOLTS

d

FIG. 7-A DIGITAL OR ANALOG quad switch. a-Circuit. b-Data selector-analog or digital. c-Data distributor-malog or digital. d-Low cost sample-hold.
be completed. The 4016 costs around $\$ 1.50$. A complete sample-hold can be built for less than a dollar. since you need $1 / 4$ of this package. $1 / 2$ of a dual op-amp and a capacitor. As with other CMOS circuits, the input control signal works into an open circuit. -5 V is $\mathrm{OFF}_{;}+5 \mathrm{~V}$ is ON .

A tracker or gliding VCO

One of the biggest problems in any synthesizer is doing glides. sweeps, and trombone effects on a keyboard instrument. A circuit originally used by Olsen in the pioneer RCA synthesizer work to do this was called a glider. Today, it's called a phase-lock-loop tracker, and it is available as the RCA CD4046 or Motorola MC 14046.

What the circuit does is this. You send it a frequency. It grabs onto that frequency from the one it is already al. You can control how fast the grabbing takes place. It can be nearly instantaneous, or it can provide a glide or sweep.

The circuit has an internal oscillator that compares its frequency against an input and then provides an error correction signal. You add a capacitor to slow down the response time to "errors".

Now, there 're bunches of phase-lock loops available and you probably have already tried a few. The hangup here is that the IC you use must have at least a 1000): 1 voltage controlled frequency range and must NOT be harmonic sensitive. This leaves out everybody but the MC4046. (The usual "565" type of PLL has only a 3:1 frequency range and is harmonic sensitive.)
One experimental circuit is shown in Fig. 8 . Your input frequency can be a sine. square, or triangle or saw tooth wave. If you

FIG. 8-PHASE-LOCK-LOOP tracker does glides and portamento from keyboard control.
are trying to follow a more complex wateform, filter it thoronghly 10 recover mostly the fundamental. or use a comparator circuit for conditioning. The capacitor sets the glide time. while the bottom recistor sets the damping or the overshoot. Make this resistor too small. and you get wild "Bounce" effects.

Cost is under $\$ 5$. The normal output is a
square wave, but you can easily break the loop and put in a binary divider and sawteeth resistors. You can also divide the input as well. perhaps to follow a fifth above or below. an octave above and so on The potential is fantastic. Use several together for chorus effects. Add external "noise" to the error signal for vibrato. chorus, or randomness.

And some others ...

Let's take a quick look al a bunch of other devices that you maty want to use in music circuits. These are a hit more specialized. but can solve some unusual music problems fast:

Motorola MCl40x-6 and MCl408-8. Six and Eight-Bit Digital to Analog Converters. Input a digital sequence and get notes out. Multiplying but not truly bilateral. An output amplifier is needed. Underss.

American Microsystems Inc. has a whote line of MOS music products. These include older top octave systems. thythm generators. rhythm counters. and newer devices that combine functions. The $\mathbf{S} 2566$ Rhythm Genetator provides a complete bandbox-on-d-chip when combined with a counter. Around $\$ 18$.

Analog Multipliers. Analog multipliers are true four quadrant multipliers. They can be used for precision keyer and VCA applications or for ring modulators. where you combine iwo tones and get only the sum and difference out, or where you shift the fiequency of a tone to compress or expand its harmonic spectra. These are still a bit steep in price to use on each and every note. hut in a synthesizer system, one or two of them is certainly worth the price. Costs run from \$15 upwards. Typical devices are the Motorole MCI49-t and MCl495, the Signeties 5596, and the Analog Devices AD532J
Besides the CMOS we ve talked ahout. check out the plain old C D4001 (MC14001) quad gate. What better way to expand the contacts on a keyboard for coupling. translation. and transposition. It takes three IC's per new contact per octave. or $1 / 4$ th of an IC per contact per key. It's the cheapest CMOS device. well under a dollar surplus.
-by Don Lancaster

TABLE 1 Some Manufacturers	
(Be sure and specify specific devices; the majority of these circuits were designed for non-music applications.)	
AMEAICAN MICROSYSTEMS INC.	MOTOROLA SEMICONDUCTOR
3800 Homestead Road	Box 20912
Santa, Clara, Calif. 95051	Phoenix, Ariz. 85036
ANALOG DEVICES	NATIONAL SEMICONDUCTOR
Norwood, Mass. 02062	2900 Semiconductor Drive
	Santa Clara, Calif. 95051
INTERSIL MEMORY CORPORATION	
10900 North Tantau Avenue	RCA SOLID STATE
Cupertine, Calif. 95014	Box 3200
	Somerville, N.J. 08876
ITT SEMICONDUCTOR SIGNETICS	
3301 Electronics Way	
Palm Beach, Fla. 33407	Sunnyvale. Calif. 94086
MOSTEK INC.	TEXAS INSTRUMENTS
1215 West Crosby Road	PO Box 5012
Carrollton, Tex. 75006	Dallas, Tex. 75222

what is a RロTl?

ROM's have a fantastic number of uses and are widely available as you-build-it and factory-builds-it types. Here's what ROM's are and what they are good for.

How would you like to build your own integrated circuit, perhaps to do a joh you can't find some catalog item for? This used to cost $\$ 15,000$ or so and take months of work. Today you can do it for $\$ 5$ in minutes, with surplus units, and under $\$ 20$ with first-rim parts. The trick is to use an extremely versatile integrated circuit called a Read Only Memory or ROM for shorn. I et's take a closer look at this exciting integrated circuit and see what it is and how you can use it.

Actually, it would be much better if a rom were called something else, for its name implies it's only good for computers. Worse yet. its name says there is something "wrong" or incomplete with the device. It would be best to call a rom a "universal code, state, logic. or sequence converter", for this name at least hints at the thousands of different things you can to with the same basic device, customprogrammed to do a specific job. Since row is easier to say than UCSLOSC" ${ }^{\text {" }}$, we'll go along with the original name
Figure 1 shows the important parts of a rom. There are a number of input lines. a series of imtput lines, some power connections, and

OUTPUT WORDS

DETERMINED BY
YOU WRITE-IT
TRUTH TABLE FOR
YOUR APPLICATION

FIG. 1-ESSENTIAL PARTS of a typical ROM. This example is medium-sized and stores 512 bits of custom-programmed decisions by providing 64 possible 8 -bit words at the outputs.
an emable control that optionally lets you turn the outputs on of of or combine them with other kow outputs in other packages. As you've probably stored. a rom is a digital device, meaning it accepts yesses and no's or I's and 0's or positive voltage and ground as two-state inpure signals. It provides similar Is and 0 's as two-state output levels. rom's are available in most every logic family, including TTL. PMOS. CMOS, and ECL.

For each and every unique combination of input ones and zeros. a code word appears on the outputs. What this code word is or what it does in the rest of the circuit is vours to decide, for you cat teach a rom to do any one specific job for you.

For instance, if a kow has six input lines. there are $64\left({ }^{6}\right)$ possible combinations of ones and zeros on the imputs, langing from 000000 .

INSIDE AN ROM you'll find a labyrinth of individual memory cells. Remember, actual size of this assembly is about .02 inch wide.

000001 , (00010 , through 111110 and 111111 . For each of these possible 64 contitions, you can select any output word you like, its maximum length determined by the number of available output leads. If you have eight output leads. each of the of words you select can be up to 8 hits long. Since we have 64 possible 8 -hit words, we apparently have an internal row "decision" or "training" capability of $512(8 \times 64)$ hits. Fach of the 512 locations can be a one or a zero per your choice, so there are apparently 2^{512} or billions upon billions of different things you can teach one IC to do.

The arrangement of the ones and zeros you want is usually shown on a truth table, a state-by-state listing of all possible input combinations and the desired outputs you want.

How is this teaching done? There are several basic ways. If you need a lot of identical rom's and are sure of what you want. you use a mask-programmahle row. Here a final metal overlay connection pattern is set up for your particular program. All the rom's made are identical up to this step. Yout mask then customizes your order to the particular truth table you need.

More popular is the field-programmmble kos. You use these if you only need one or tho. or arent sure if your truth tahle will work, or suspect you will have to change things later. Some fieldprogrammathle rom's arrive from the factory with a fuse at each possible location in the memory. Betore you use the rom, you go through a programming procedure that selectively blows out the fuses you don"t want. leaving you with a custom pattern of ones and zeros that matches your truth table. You do the programming one bit at at time. usually applying á current of several hundred mA at a programming input. The current is increased till the fuse opens. and you then go on to the next fuse you wans to open.

All this really takes is a variable power supply with a meter, but the "zero defects" nature of this work and its "up the wall" aspects make programming services very desirable.

Many electronic distributors offer nominal or free programming services and guarantee the results-provided. of course, that you wrote the truth table down correctly! Programming machines are also available that ease the problem. These cost several hundred to several thousand dollars, hut speed up the programming tremendously and eliminate many error possibilities.

Other field-programmathle rom's use buried charge (electret style)
laters or silicon bridges instead of nichrome fuses. hut the result is the same. The ron fresh from the factory is either all ones or all zeros. and you do something-usually by applying an excessive voltage or current to remove or implant something at every memors location- that changes the ones to zeros or vice versa. Yout then end up with the truth table you wam.
Once programmed. the majority of kom's are permanent: hence the name rend ombly. If you made a mistake. you throw the IC away and start on a new one. On the other hand, since the programining is mechanical. it's forever independent of supply power. Turn your kom off for a sear and reappl! power-and the truth table is still inside. A few newer rom's are erasable by removing part of the lid and applying intense uttraviolet light. These are expensive and not too common yet

Building your own read only memory

Let's huild a "semi-discrete" row and see what it can show us about how the real ones work. Outside of doing it once as an exercise or to learn more about the process. going this route is complex and expensive compared to using the real thing.

Suppose we need a way of converting a 4 -bit hexudecimal number into a 7 -segment display so we can display the numbers 0.1 .2. 3. 9, A. B. C. D. E. and finally F with the letters handling states 10 through 15 and the numbers represemting their own binary equivalents. A quick chech of catalogs will turn up lots of differem decoder/driver integrated circuits. This particular one seems to be rare so let's pretend it doesn'1 exist at all. We have to use a row to build it.

Note that wed go up the wall trying to build this out of simple gate pachages-it would take a bunch of them and the design would take hours. With a ron, the design only takes minutes. and a onepackage solution almost always results.

We start by generating a twith tahle (Fig. 2). Our four input lines have 16 possible states (0000.0001 . . . hrough IIII). We need

INPUT				OUTPUT								PATTERN	
D	c	B	A	A	B	c	D	E	F	G	H		
0	0	0	0	1	1	1	1.	1	1	0	0	11	
0	0	0	1	0	1	\$	0	0	0	0	1	1	
0	0	1	0	1	1	0	1	1	0	1.	1	二	
0	0	1	1	1	1	1	1	0	0	1	1	\bar{I}	
0	1	0	0	0	'	1	0	0	1	1	1	1	A
0	1	0	1	1	0	1	1	0	1	1	1	7	$F / \mathrm{G} / \mathrm{B}$
0	1	1	0	1	0	1	4	1	1	'	1	I	10
0	1.	1	1	1	1	1	0	0	0	0	1	1	0
1	0	0	'0	1	1	1	7	,	1	1	1	I	
+	0	0	1	1	1	1	1.	0	1	1	1	II	
1	0	1	0	1	1	1	1	1	0	1	1	7	
,	0	1	4	0	0	1	1	1	1	1	1	1	
1	1	0	0	0	0	0	1	\%	0	1	1	I	+ $=\angle 1 T$
1	1	0	1	0	1	1	9	1	0	1	1	$\square 1$	SEGMENT
1	1	1	0	1	1	0	1	1	1	1	1		
1	1	\dagger	1	0	0	0	0	1	1	1	1	$1=$	

FIG. 2-THE TRUTH TABLE WE NEED to build a 7-segment decoder/driver with a ROM. Its four input lines have 16 possible states. Each of its seven output lines drives one segment of a 7 -segment display device.
seven output lines-one for each segment of the display. Lets piovide eight to round things out and put a "count zero" detector on the eighth line. Each output line lights a display segment if it is positice and puts out a display segment if it is grounded.

For instance. we could connect our output lines to a MAN: or MANt common-cathode LED readout. Positive current liglits a segment. Voltage near ground puts it out. The segments are labeled A through G in the usual clochwise from the rop manner.

To huild the actual row. We use a bunch of diodes and a $7+154$ t-line-to-l6-line decoder. This paticular IC converts the four input lines into a one-down-ont-of-sixteen pattern on our imtermediate output lines. so that a 0000 input grounds the top intermediate output, a 0001 the next one down. and so on down to 1111 which grounds the hollom intermediate output line. Onlv one output line is grounded at at time: the rest remain poshite. Figure 3 shows the circuitry.

Going to our tuth table. 0000 should give us an output 0 . lighting

FIG. 3-OUR "FAKE" ROM is made from a 741544 -line to 16 -line decoder and a diode matrix to turn on and off the segments of a cold-cathode or LED 7 -segment display device.
everv segment bat G. so we put a diode between line Gand the 0000 decoded output. This diode conducis only on count 0000 and puts out this segment only at that time. On 0001, we only want to light B and C so we evidently have to put zeros and diodes on A. D. F. F. and G. On 0010. 10 gel a 2 lit, we put diodes on C and F. And so on. down the truth lathes.

We mathematically generate the truth table by placing a 0 everywhere we "ant a segment out and a l everywhere we want a segment lit. We physically program our kow hy puting a diode everywhere we hant a 0 and leasing a diode off every where we want al. And this completes our decoder/driver
To get tancy. we can use the eighth output lines as a state 0 decoter that might he useful for blanking or somewhere else in the system. All this takes is a new diode on the 0 line. We can use the output enable on the 74154 to drise all the outputs high for a lamp tent, and we can blank the display either by breaking ground or removing the supply power

We used diodes to keach our rom to do one specitic thing. There are 128 possithe memory lociations in our simple rom. Each of these locations can be given a 1 (no diode) or a 0 (diode) per vour choice. so there are apparentl) $2^{2 x}$ different truth tables you can write. (My math book stop, at 2imt $=2.535 .301 .200 .456 .458 .802$. 934.406 .410 .752 2128 could be 134.317.728 times as large as this-you figure it out.)

Ohviously we have a hunch of different truth tables we can write-A great heaping hunch. We can leach the ron anything we like. consistem with the avalable number of inputs and outputs.

For instance, we could well the kow to subtract 3 from each input. Or multiply by 6.2. Or take the squate root of it. Or we could tell it to decode and combine only certain states. We could make it plas music. We can change codes or number sustems. We can generate waveforms. There doesn I have to be any cleat cut rhyme or reason relationship between imputs and ompuls. If you can draw a truth table. the rom will do the job for you-quichly and in at single pachage.

The orgamization of this particular kom is called 16×8 or 16 - 8 -bit words. Its potentiat memory locations are I2 x . so it is atso catled a 128 bit rom.
Rom design is philosophically very different that older logie designs. The name of the game used to be a thing called "minimiattion \because. where youtried toget the logic equations in their simplest form and then build up a pile of gates to realize the "simpleat" possible form. With rom's you use redmidancy instead. You take one logic
bloch in one integrated circuit pachage with an inciedible amomint of redundancy-it can realize the "minimum" equivalent of amy and all possible equations you could care to write consistent with the available imputs and outputs. You ignore the math and the simplifications! Insteal. Jou just write down the truth lathe you want and prograin the rom.

The bencfits of redundant circuit design are overuhelming. The old way, yougot a "minimum" logic design that looh a dozen pachages and tooh hours to design and debug. It was ersentially unchangeable after design. particularly once it was loched into a PC board. The new way takes only seconds. Write vour program. program the rom and plug it in. The new way always works without any worty aboutglitehes, races, disallowed conditions, sub-routines, and simila horrors. Changes? Simple. Just tathe out the old single IC that does the joh and put a new one in its place. For everyday logic use. the texthook "minimization" technigues are an inexcusible vaste of lime and money once vou ged past a two- or three-pachage gate complexity. All they "minimize" is profits and the prohability of succers.

Commercial availability

Table 1 lists the commercial sources of programmable romes. one source of programmers. and one distrihumor that does programming Table 2 lisas a number of common Rom's and their organizations.

TABLE I
Some sources of rom's and services:
CIRCUITS

Harris Semiconductor
Box 883
Melbourne, Florida, 32901

Intel Corp.
3065 Bowers Avenue
Santa Clara, California, 95051
Intersil, Inc.
10900 N. Tantau Avenue
Cupertino, California, 95014
Microsystems International
Box 3529 Station C
Ottawa Canada
Monolithic Memories, Inc.
1165 East Arques Avenue
Sunnyvale, California, 94086

PROGRAMMING MACHINES

Spectrum Dynamics 2300 East Oakland Park Blvd. Ft. Lauderdale, Florida

Motorola Semiconductor
Products
Box 20912
Phoenix, Arizona, 85036
National Semiconductor Corp. 2900 Semiconductor Drive Santa Clara, California, 95051

Signetics
811 East Arques Avenue
Sunnyvale, California, 94086
Solitron Devices
8808 Balboa Avenue
San Diego, California, 94086
Texas Instruments Inc.
Box 1443, Station 612
Houston, Texas, 77001

PROGRAMMING MACHINES		PROGRAMMING SERVICES	
Spectrum Dynamics 2300 East Oakland Park Blvd Ft. Lauderdale, Florida		Semiconductor Specialists Box 66125 OHare Airport Chicago, Illinois. 60666	
TABLE II			
Here are a few currently popular programmable rom's:			
Part Number	Manufacturer	Organization	Bits
HROM-1-0512	Harris	64×8	512
HROM-1-1256		256×1	256
HROM-1-8256		32×8	256
HROM-1-1024		256×4	1024
HROM-1-2048		512×4	2048
IM5610	Intersil	32×8	256
IM5623		256×4	1024
MCM5003	Motorola	64×8	512
MCM5005		256×4	1024
MCM10139		32×8	256
MCM10149		256×4	1024
N8223	Signetics	32×8	256
N82S26		256×4	1024
SN74186	Texas Insts	. 64×8	512
SN74188		32×8	256

One programmatle rom that's showing up quite a bit in the surplus market recently is the Signetics 8223. Costs have gone as low is $\$ 5$ each. It is shown in Fig. 4. It's a bipolar device. DTL and TTL

FIG. 4-A POPULAR

8223

PROGRAMMABLE ROM
that is inexpensive,
readily available, bi-
polar, and TTL compat-
ible. Supply voltage is QUTPTC 3
+8 V supply current is OUTPUT 65 mA . Connecting "enable" to ground
provides an output OUTPUT G 97
code. Connection to GROUND 8

+ volts floats the
output.

TOP VIEW
compatible and works with a single +5 -volt supply. Operating speed is a fration of a microsecond.

By the way-preprogrammed kow's available surplus are only useful if you know exactl what they are and what the can do for you-a random or unknown program is totally worthiess and essentially impossible to decode.

When do you use a rom?

You use a kom anytime you vant a group of input mombers to he somehow related to a second group of output numbers. especially When you can"t lind a stoch iC to do the job. rom's hecome particularly attractive th the joh seems hopelessly complex for constation using gate packages.

There are several differen ways to use your input numbers. If you feed your row one number and then get a new one out on a random basis, you are using the ststem for code comersion or table lookup. If fou sequentially go through veru inputs. you have a wateform generator. Here the outpur provide an ordels progression of state changes, perhaps to generate a sinewave of a music note. If you use your inputs as sepatate logic inputs instead of feeding them a whole word at a time. vou have a programmathe logic arras. Similaty, if vou route vour outputs to separate and distinct places. you have a sequencer, a commoller. a timing generator, or a thythm gencrator.

To really get fancy, you can let a kom control itself: To do this. you store or latch the outputs each cycle and use the last ouput to INPUTS OUTPUTS

FIG. 5-HOW TO EXPAND ROM's by using several of them. Note that the doubled storage only offers one new input lead.
provide the nex inpot adeless. This was. the kom marches through its truth table in a prescrihed and controlled way. You use this for unusual length commers and computer micropongramming.

Rom design in easy. First. you make sume you really need one and that nothing is a vaibable commercially to do the job. Then you write your truth table. Then you find a kos that lits it. Then you program the Rou.

If your wath table seems hopelesaly latee you try to minimize it through several tricks of the trade. These include removing mirtor images (such as genematige only one quadrant of a sime wave), putting easy-to-realize functions outsithe the matn kow, asing multiple trips through the kobs. factoring. fearmaging to lit koll organi/ations. eliminatang "don"t care" states, and so on. Virthatly every truth table can the minimized in a complex system. If you have redaced
 kom or several Royis combined with inpul steering and output enables.

Note that vou don't double the inputs when you add a second row to a lirst one-all you gatis is one extra input. Since you only douhled the memory capacity. your addressing hasonly increased by one power of twa. Seben lines hase twice the shorage capability of sid. If von are using h-inpul (6t-word) kows, it takes mo of then for seven inputs ($12 x$ words). form of them for eight inputs (25f words). eight of them for mine inputs, に12 words). and so dr. Figure 5 shows how you combine romis with their enathles.

There are several soch orgamiations of Roms 16×8. 256×1. 64×8, and 128×4 heing common smather ones. Sometimes you can reatrange thing with a lateh or a data selector to change the organization if you want to. For instance, if vour particular rom has eight output leads. and you ondy need a foultut word, you can use a 4 -pole double-throw datat selector $(7+157$) to pick either the top or bottom four hits. This doutes the number of words you have availathe. On the other hatrd. you can provide two K-hit latches on the output and enable them on ahermate addresses. If you look at all 16 outputs at the right time. youget a lo-hit output word. Of course. to

FIG. 6-THE DATA SELECTOR at (a) gives you twice as many output words of half the normal length. Using the setup at (b), the odd addresses are saved until even an address arrives. Output is half as many output words of twice the normal length.
get this. your ve eut the number of words in hatf and reduced the posible operating speed at the sime time. Figure 6 shows how you cath change the organization of a kost to tit your needs

Sometimes a pectat cestom organization will help. This wats done for the dime-zone-convering Ros on the Radio-Electroniss

Superclock (July 1972), where a 38.4×6 MOS Rom was used with a simple external OR gate to convert 2400 -hom time to anv timerone in the wotk. "Non-binary" organizations nommally cost prite a bit of mones and ate not atailathe in field programmable units

Even if vou are plamming on ming a hunch ot idemical kown. you first use progammable ones. and then later go on to the cheaper mask-progratmmate versions. The hreakeren point is typically sev eral hundred identical units. A few doren identical romis are easily copied or duplicated on a smatl programming machine. If you do go to mask-progammed units. kon-PROM pails make the changeover easy.

Stock read-only memories

Besides castom patterns. you can get stoch pattern Ravis pre programmed and ready louse. There is no masking chatge for these. since thev are a popular enough patlern that lots of them can be sold. Very common examples are the chatacter generators wich as we used in the Rudio-Elecronics VV Typewtiter (September 73) and the TV Time Display (seheduled tor a fortheoming is:

There are several ivpes of chatater generators. Most of them accept a b-hit ASCII standard computer code on one set of imputs and sonte system timing on some remaining outputs. A rom ouput chatacter generator is designed to work with TV sets. It puts out a bunch of dats or mudots on its output lines. These go do a TTL shift register and are then clocked out as video. A collomm output chatacter generator works sidenays and puts oul a vertical group of dols and undots useful for moving message signs and strip printers Either type costs around $\$ 12$, but a bunch of support circuitry is needed.

Other stock row's include code converters particularly to get from the specialized selrciric and ferodic codes to ASCII and back agan. Trig tables for sine and cosine generation are also fairly common. although still a bit steep in price. A vastly different stock row is the American Microsystems S2566 Rhythm Gencrator used to generate the accompaniment beats (wattz, tango. etc,) on an elecfronic orgatl

In addition. mans ordinary IC's are really ron's in dinguise, for the semicondactor people long ago found out that it's easier to design one redundant arow pattern and then change the metallization overlay than to relay out and make separate $I C$ s for each and every spectal finnetion. The Motomata MC 4000 serien of TTL uses several kons functions

Applications

We ve already seen that a ront can be used anywhere jou want 10 convert ane group of digital bords to a second group of words. ether on a ofte-at-atime. a sequential. or alet-the-firb-one-dectide-the-nextone basis. The wilder or the more unasalal the relationship between the inpus and outpur the better a roas will work. For vou work directly with the truth table. Competing vateme require deriving atl the individat logic relatomships between input and output. and cannot nomailly be done in a simgle IC

So far. we ve taked ahout display decoder drivers. chatacter gencrators. sinewave generators. electronic masic. time-rone convertms and code conterters. Let's take a quick look at some other possitilitics.

Frequency synthesiser and digital programmer often use thambwhee switches. The numbers of the switehes indicate a channel number or a frequency, but the circuitry inside may take entirely different numbers to operate. Rather than use an expensive special switch. a krom performe the internal conversion-the operator sees his number and the circultry see the number it needs at the same time

Sinewaves are eary to generate by baking a counter and a sineloohup kom. Add a D/A converter for at low-dintortion sinewave osciltator of constant amplitude that can go down to ultarlow frequencies whont ans large parts.

Rowis are uned incathode ray tube dibplay systems for pincushion correction. dyamic focus and comvergence, and so on. Besides gencrating dot-matrix charaters. kom's can store and generate whole mesiges as well. Often you generate the fixed portions of a message in a row and add the changing part io it. You can also seramble or tanscramble data with mow's. throwing away what you don't want and rearranging things to get a needed tormat.

Any logic equation you can write in truth-tathe form is also easily handled hy romis. The one-pachage solution and instant design are top advantages. Besides. the circuit is trivially eas to change-you simply replace the rom. Compare this with a traditional "minimum" logic design of several dosen pachages and loched-in interconnecions.

SIMPLE SCOPE SERVICING

by JACK DARR
SERVICE EDITOR

The cathode-ray oscilloscope is the fastest, most accurate, and simplest test instrument in a TV shop! We've been telling you guys that for too many years now. There are still entirely too many of you who persist in thinking of it as a very complicated, hard to use, scientific instrument. It is not! It's the best, fastest and simplest instrument in the place for givg you the answers to questions that can't be answered in any other way. The most common of these, and the most useful. is, "Is it there or isn't it?"'

Typical instance: The set wiggles, bends, rolls and acts up. along with other symptoms. This kind of multiple symptom thing generally means that you have a feedback loop somewhere causing cancellation of sync, assorted oscillations, and other things. How to find out? Pick up the scope probe and jab it on each of the filter capacitors. one at a time.

What should you see on each of these test points? Absolutely NOTHING. Nice straight line on scope-screen, indicating "pure de" The dc power supply should have zero impendance to ground. If it doesn't. you*ll have a beautiful feedback path through the de power supply, which is the only thing common to every stage in the set. So if you see any "signal" when you scope the filter capacitors, something is darn well w rong. It almost has to be some fault in a filter capacitor; either open or low in capacitance. They are supposed to take out all signal from the de power supply lines.

Double-check: leave the scope on the capacitor and bridge a good one

Clocked logic where the rom output sets the next input address offer all sorts of possibilities for unique counter sequences and minicomputer microprogramming. You normally initialize your sequence with a latch reset or the enable. Loops are done by returning to the same aduress and branching is handled by creative use of a new input. or an Exclusive ORing change of an output word.

In fact, anywhere you want to change one set of numbers into another set, or anywhere you want to change what the signals on one bunch of leads are doing, you can use a rom. And at last, the prices and availability are good enough that you can seriously consider using your own custom IC as a routine solution to a wide variety of digital problems.
across it. If the signals disapper and the symptoms clear up, there you are. By actuat time-tests. this can be done in less than 30 seconds. How fast can you get?

What do we mean "signal" in this test? ANYTHING. Set the scope for a reasonable vertical gain the heater supply of your tube-tester is a handy source for rough voltage calibration. Voltage rms times 2.8 gives you the peak-to-peak reading. Never mind the horizontal sweep frequency! Jab the probe to the filter terminals, and if you see $A N Y$ vertical deflection at all you've got trouble! If you insist on fooling around. you can adjust the sweep and find out what frequency it is, but this is immaterial. Anything you see there is "ac" and means trouble.

More: this time you've got a dead amplifier. What kind? Any kind; rf. i.f., video, color. You know that signal is going into it . but it isn't coming out. How do you know you've got a signal going in? Because you can feed it in or rely on a known air signal. This can be checked with the scope, 100 . Example; hit the video detector output of a TV set. If you see about I to 2 volts p-p video at this point, but there's no picture on the screen, the video amplifier has a normal input but no output.

The "signal-path" in ALL amplifiers is a series circuit. If it is going in but not coming out. the path is broken sonewhere. You must find out where. Start at the inpul and follow it. In a tube set, this would be grid-plate-gridplate and so on. Transistors: base-collector-base-collector. etc. When you go through an amplifier stage. you'll see a voltage gain, in tube circuits. In transistors. you may not see much voltage gain, but you will have output. If you get out about as much as you put in, OK

Somewhere along the line, youll find a stage which has input but no output. There you are. On one occasion. I traced out an audio amplifier and located an open coupling capacitor between the second and third stages in a litule less than 65 seconds! (Of course, 1 had the service data!) Even coldturkey, you can usually follow the signal path. since you can identify the input and go from there.

In stereo amplifiers with one dead channel, you can tie the inputs together and "A-B" or cross-check between the same points in each channel. This will tell you exactly where you're losing the signal. It'll also tell you where distortion starts, if that's what you're looking for

A lor of you have problems with color TV. Here again, the scope will give you fast, accurate answers that you can not get with any other test instrument. A series of "bang-bang" tests like those 1 just mentioned will check out a color bandpass amplifier. demodulator and color-difference amplifier stages quicker than you can say "Complementary symmetry integrated circuits". ((Speaking of that. the scope is the only way to go in any IC circuitry. If you have good signal in and no signal out of an IC, and de volage supply is normal, the chances are that the IC is bad!)

By feeding a color-bar signal into a color TV set, and tracing the unmislakable patterns through the bandpass, demods and diff-amps you can identify any kind of color trouble. For loss of color, it will tell you where the color signals stop in the bandpass amplifier; if you see the characteristic "rocker" or Lazy-S pattern on the diff-amp grids, the demodulator and $3.58-\mathrm{MHz}_{z}$ oscillator are working. If you see a flat-topped comb pattern on the differential-amplifier grid. the $3.58-\mathrm{MHz}$ oscillator is dead. Instant identitication of problem.

Let's kill another old superstition while we're at it. You do not have to have a $20-\mathrm{MHz}$. dual-trace, triggeredsweep scope, at about two grand a copy, to do this! They're very nice. But-you can make every one of the lests mentioned above with a narrow band recurent sweep scope in good working order! You won't see the exact waveforms, maybe, but you will get the information that you must have, from the Is it there or isn't it?" test!

One more and then l'll go. "Odd Color" problems. This often means that one of the bypass capacitors in the color stages is open, once again allowing a feedback loop to set up. Test: scope each bypass capacitor in the circuit. If yo see any signal, this is the bad one: that's what the bypass was put there for!

So: here you have an instrument which can do more for you than any other in the shop, by making your test and diagnosis time far shorter. So, why the heck don't you use it? I'm not talking to those of you who do use the scope, but to the guys who have one and leave it sitting in a corner gathering dust instead of gelt! Don't he afraid of it: it won't hurt you, and it won't hurt the sets: if will help you to diagnose any kind of problem in electronic equipment much faster and more accurately. So Use it! Use it!

R-E

4-CHANNEL MULTIPLEXER FOR LOGIC EXPERIMENTS

When experimenting with digital circuits, some form of multiple scope trace is necessary if we wish to observe or compare the instantaneous states of various stages. Here is a circuit that you can assemble for about $\$ 3.00$ and use to multiplex four DTL or TTL signals on to a single-trace scope. Here is how it works:
Two inverters and one nand gate in a loop form the circuit clock. The capacitor in the loop across one inverter can be any one of a wide range of values, depending on the capabilities of the scope being used. A value of 0.05 $\mu \mathrm{F}$ will allow signals up to 8 kHz to be viewed without having the chopping of the circuit interfere with the display. A smaller capacitor will allow faster signals to be seen but may exceed the risetime capability of the scope.

The clock is divided into four phases by the two $74107 \mathrm{~J}-\mathrm{K}$ flip-flops. Each of these phases is picked off by one of the NOR gates in IC4, the 7402. IC4 drives two quad 2 -input positive NAND gates
with open-collector output a (IC5 and IC6). The gates in IC6 are signal-level generators. The signal consists of a staircase with levels at $1,2,3$ and 4 volts. Each level is present for one clock time or phase. Since this is much faster than the signal, it should appear as four traces on the scope. IC5 presents the signal on each level. It does this by gating the signal with the phase. If the phase is high the signal will be put on the line. If the signal is also high, it appears as low to the gate and the 1 . 2,3 or 4 trace level is undisturbed. If. however, the signal is low, it appears as high to the 7403 gates, and turns it on, thus paralleling a resistor across the trace-level resistor and thus lowering the trace. The resistor values in the box give the R values for 0.5 -or 0.75 -volt drops. I personally prefer 0.5 -volt steps. The external sync is always taken off of channel 1 .

In the second mode of operation the clock srop switch is turned on and the clock feedback is disabled. stopping the clock. The toggle switch circuit is enabled through two of the nand gates

BUILD Improved ASCII Encoder

by DON LANCASTER

the original radio－EIECTRONICS asCil keyhoard encoder（Radio－Electronics， April．1973）was designed to convert the single－make contacts of the Low Cost Keyboarl（Radio－Electronics，Fehruary． 1973）into the proper ACSII computer code for talking to either a computer or the TV Typewriter（Radio－Electronics，Septemher 73）．Heres a greatly impooved version of the same circuit．
It＇s much smaller，uses far fewer parts， has true TTL compatible outputs，provides an optional＂there＇s two keys down＂output and is designed to exactly fil one end of the currently popular＂keypunch＂type of sur－ plus keyboards．Costs are abour the same as the original but no kits are sold．It works with any keyboard that has one isolated pair of spst contacts that are normally open per key．The contacts may be mechanical，reed
switches，contacts，or resistive elastomeric pads．For low impedance contacts，you need a single +5 －volt supply．For resistive contacts up to 1000 ohms．you need a sec－ ond +12 －volt supply at low current．

In its present form．it will encode all the upper case alphabet，most punctuation，all the numbers，a spacebar，a carriage return，a shift key to shift from numbers to punctua－ tion，and a control key for transparent or machine commands．Additional keys are easily added if needed．A slight modification of the pre－encoder matrix on the Radio－ Electronics low－cost keyboard（Fehruary 1973）is needed to use the new unit．

More on ASCII

The standard computer cole in use today is called ASCII，short for American Stan－ dard Code for Information Interchange．

The complete ASCII code is shown in Table I．While there are 128 possible entries to the code．we are only interested in the first six columns of these．Columns 0 and 1 are the transparent or machine commands． Things that don＇t end up in print or as part of a message．but instead return carriages． start and stop equipment．indicate begin－ ning，and endings，and so on．Column ？is the most popular punctuation，while column 3 is the numbers and more punctuation．In this encoler，we get from column 2 to col－ umn 3 by using a shiff key．Thus．a capital ＂l＂hecomes a ！，and so on．Finally Col－ umns 4 and 5 are the alphabet and some les－ ser used punctuation．
We can get hy with a basic assembly of 48 keys less a few if we＇re willing to do away with $1 / .1 . \uparrow$ and With a Control or CTRI key，we can shift any column 2 or 4
table I
THE INDUSTRY STANDARD ASC11 COMPUTER CODE

b7 \qquad 66. b5					$\begin{gathered} 0 \\ 0 \\ 0 \end{gathered}$	0	$\begin{gathered} 0 \\ 0 \\ 0 \end{gathered}$	1	$\begin{gathered} 0 \\ 0 \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	1
Bits bd	b3	b2	b1	Column Row	0	1	2	3	4	5	6	7
0	0	0	0	0	NUL	DLE	SP	＊	＠	P		p
0	0	0	1	1	304	DE1	$\stackrel{1}{*}$	1	A	Q	a	q
0	0	1	0	2	STK	Dre	$*$	2	8	P	b	r
0	0	1	1	3	ETM	OLe	\％	3	C	5	C	s
0	1	0	0	4	EOT	DC4	考	4	D	1	d	t
0	1	0	1	5	E40	14＊	\％	5	E	4	e	u
0	1	1	0	6	ACK	SW1	A	6	F	V	1	V
0	1	1	1	7	BEL	ETB	Smand	7	6	W	9	W
1	0	0	0	8	B8	CAN	1	8	H	X	t	＊
1	0	0	1	9	17	EM	1	9	1	Y	1	y
1	0	1	0	10	1.2	\＄48	＊	＂	J	2	1	z
1	0	1	1	11	47	Exa	㥅	\％	K	1	k	\｛
1	1	0	0	12	繁	F\％	\％	क	1	＊	1	1
1	1	0	1	13	CR	\％${ }^{3}$	smem	＊）	4	1	m	$\}$
1	1	1	0	14	50	P3		3	N	离	n	＊
1	1	1	1	15	这	45	1	$?$	0	2＂	0	DEL

1PARTS LIST
C1-0.1- $\mu \mathrm{F}$ disc ceramic, Mount flat. D1, D2, D3, D4-1N914 or equivalent silicon computer diode
IC1-HD0165 Encoder (Harris)
IC2-7402 TTL Quad nof gate
IC3-MC789AP Hex Inverter, RTL, do not substitute
IC4. IC5-7400 TTL Quad nano gate
Q1, Q2-2N5139, silicon pnp
R1. R2-Varies with keyboard, 1000 ohms for mechanical contacts and +5 supply; 3300 ohms for elastomeric high resistance contacts and +12 supply
R3, R4- 1000 ohms, $1 / 4$-watt carbon
MISC: PC Board, Solder: No. 24 Soldereeze wire, 20 feet for keyboard wiring, sleeving. No. 24 solid wire jumpers.

NOTE: The following is available from Southwest Technical Products, 219 West Rhapsody, San Antonio, Texas, 78216

PC Board, etched and drilled: \$5.75.

FIG. 1-ASCII ENCODER CIRCUIT (top) is easy to build. FULL SIZE FOIL PATTERN (above) is for the circuit board. PARTS LAYOUT (right) shows where to mount the components on the circuit board.
code into a column 0 code, and any column 3 or 5 code into a column 1 code. Thus, we need no new keys for the control commands, unless we are really going to use that command often. Carriage return is often used, so, it's handy to have a special key that simultaneously gives us a CONTROL and a m command. Similarly, we can get a spacebar by simultaneously giving a SHIFT and a 0 command. Other special functions (DELETE, ESCAPE, al T MODE, etc. . . .) are easily added in the same way.

To decide when a code is sent, a keypressed command is given when a key is
pressed, telling things on the other end that something new is happening. We do NOT deliver a keypressed command for the shift or control key, for they are always used in conjunction with another key. And. in our circuit, we get a free "there's two keys pressed!" output that can be used to tell whatever is on the other end that the typist is running too fast or just made a mistake and please ignore what just arrived. One final, and slightly messy detail involves the $>=<$ and ? keys. Normally, we like to type commas, dashes, periods, and slashes without shifting, and save the question.

TYPICAL KEYBOARD WITH ENCODER. The small encoder board is mounted at the right end of the keyboard.

equals, greater than, and less than for shifted commands. This is clearly backwards from the standard code. So if we are going to go along with the standard code coften we are forced to because of the keytops on the keyboard we're going to use), we have to arrange the shift key so that it operates hackwards on these four keys. All this takes are two $21 \not \subset$ IC's, but this is a complex and painful little detail to resolve.

The output of the code consists of seven bits in parallel, or all-at-once form. An eighth parivy bit can optionally be added for error detection, or the seventh bit can optionally be dropped to get the 10 -bit code that has only alphanumerics to run a character generator. Should we want to talk to a computer or a phone line, we have to convert this code to a serial form, easily done with either the circuit shown in the original article or with a new MOS terminal transmitter/receiver chip. Depending on the type of keyboard and the debouncing in the rest of the system, we may have to add a contact conditioning and debouncing system as well.

About the new circuit

The new circuit is shown in Fig. 1. Except for IC1 (presently around $\$ 7.50$). all the remaining parts are nickel and dime stuff, and there are only 19 components in all. Just like the code of Table I, we can split the problem into two parts, for the lower four bits couldn't care less what the upper three are doing, so long as everything ends up right. Thus a lower four bits 1101 code could be a carriage return, a group seperator (a very rare machine command), a dash or minus. an equals. a M. or a large unbracket. 1CI singlehandedly takes care of the lower four bits for us. It has sixteen input lines and four output lines. If you make any one (only one!) input line positive, it gives the binary equivalent to that code. Thus the third line generates a 0011 , the eighth line a 1000 , and so on.

The inputs are RTL style and simply need an impedance path to +5 or +12 to serve as an input command. Whatever else the input current flows through on the way to set up the upper three bits is of no concern to ICI, so long as the current gets there when it is needed. ICI also generates a keypressed output that's high if all the inputs are low and goes low if any key is pressed. It also produces an optional output that goes low if two keys or more are simultaneously pressed. This is called a NKRO output. short for N -key-rollover.

It only takes about +3.5 volts to turn on an IC 1 input. Since the input is current operated. we can either get our current from a low impedance (mechanical or reed) contact and a +5 supply. or from a higher impedance (elastomeric or foam) contact and a +12 supply. Around two milliamperes are needed, but it can handle much more than that safely. Thus, we can use virtually any kind of keyboard contact simply by picking one optional low current supply voltage.

So much for the lower four bits. The upper three bits are generated by responding to what the ICI input current is routed through on the way down from the positive supply. If it goes through nothing, we set up P-Z. If it goes through Q1, we set up A-O. and if it goes through $Q 2$. we set up zero through 9 and the related punctuation. The (contimued on page 92)

Step-by-step TV Troubleshooters Guide

by Stan Prentiss

A smeary picture can be due to misalignment or defective agc. Think you can spot the cause right away? If not, here's how you can.

OUR FATED INTRODUCTION TO THIS CTC 39X RCA was at an RCA distributor's. It had been deposited by a local TV repair shop. The basic complaint was smeary picture . . . with Fig. I as posilive evidence. This wave/form was taken with the usual 10X low-capacitance probe at TP201 (Fig. 2, the i.f.-age schematic), following the video detector, and registered just over 2 V p-p. as RCA specified. The sync portion could be adjusted to some 30 percent of the waveform at full modulation as shown, since the envelope has the same amplitude as the station-supplied negativegoing pulse reference.

However, there were buckets of spurious frequency "fill" in the sync portion between the top of the blanking pedestal and the tip of the vertical sync pulses that are always transmitted during each vertical field blanking interval of 1.4 milliseconds. But there is a black peak level just below the blanking level, and so this smear would not reproduce in the visible picture unless it also extended below the black peak and into the video.

A close look at the photograph will show that such, indeed, is our problem. Although there does not seem to be a full smear extension, the 15.2 -milliseecond on time trace does indicate higher-frequency problems just below black peak since low-frequency problems show up as ripple, while high fre-
quencies appear as smear

Reflections or agc?

Having our good oscilloscope handy-but no demodulator probe-we had to approach this problem somewhat from the rear by continuing stage-by-stage down the video amplifier chain all the way through the 3 rd video amplifier. We found that the condition was faithfully amplified directly into the picture tube. Even a tube pull or two and a disconnect of the 800 -nanosecond luminance delay line failed to show that such interference originated from reflections, but rather confirmed that the problem lay among the intermediate frequency amplifiers or in the agc.

Why pick on agc-there's no sync compression? Because we had not yet verified whether the agc i.f. control would drive the video i.f"s and amplifiers from saturation to

FIG. 1-VIDEO WAVEFORM shows smeary picture at output of video detector.
cutoff, with "resting" dc i.f. drive voltage approximately at mechanical control midpoint. Approaching saturation, of course. the 30 -percent sync pedestal first begins to disappear, followed by the video portion: while in cutoff, video fades initially, followed by sync-all seen on an oscilloscope after the video detector, naturally.

Can agc induce smear? Certainly, if its dc control is unbalanced, coupled with leakage from 63.5 -microsecond line sweep filtering through the RC time constants to the video i.f. 's. How do you tell? First, check cutoff and saturation characteristics. Then, if these are good, put your scope's vertical amplifiers on ac and switch the attenuator to about 20 millivolts/div. Any $15,734-\mathrm{Hz}$ flyback pulse leakage will show up in detail at the base or grid of the ist i.f. In this case. there was only a little, and added shunt filtering made absolutely no difference in the picture. Therefore, any agc source problems were eliminated-at least for now.

Can alignment help?

Alignment can often help a tuned circuit condition to a certain extent, and if the trouble points to problems in the intermediate frequency video amplifiers, then there's every advantage in trying . . . especially with all the new. excellent alignment equipment now available.

FIG. 2-VIDEO I.F. AND AGC CIRCUITS of the RCA CTC 39 color TV receiver. The video detector output circuit is greatly simplified.
condition to a certain extent. and if the trouble points to problems in the intermediate frequency viden amplifiers. then there's every advantage in trying ...especially with all the new. excellent alignment equip. ment now available

But do he careful. because there's a special link circuit in this CTC 39X that won't respond satisfactorily 10 just any old for young) input impedance, and the quadrupler detector RCA requires at the TP? 03 test point is a must: we know. we ve heen there before! This link includes a transistor amplifier (Q2. Fig. 2), along with the usual coaxial cable, and supplies a midpoint 44 MH , bandpass directly to PIOI and the i.f. amplifiers.

You can try (using terminations supplied by the sweep equipment manufacturers) to get by with a response curve such as the one in Fig.3, but such flattopped response with video and chroma markers on lop of the curve simply won't work. They must look like Fig. 4 at 75 percent on either slope of

FIG. 3-RESPONSE CURVE has flat top due to incorrect sweep generator impedance.

FIG. 4-CORRECT RESPONSE of link network has markers 75% up on each slope.

FIG. 5-OVERALL I.F. RESPONSE at the video detector before complete alignment.
the curve. with the $41.25-\mathrm{MH}$ z sound carrier and the $47.25-\mathrm{MH}$, lower adpacent channel sound carrier traps set at the hottom of the skints along the baseline

Present such traps first hy tuning a sinewave generator modulated hy 400 Hz or $1,000 \mathrm{~Hz}$ to their resonant frequencies and scoping for minimum trap amplitude setting before beginning the link alignment. But once through the link alignment. let hoth the link and traps alone forever!

The overall response at the video detector after link alignment will probatly look like Fig. 5, hut don't worry. Other i.f. adjustments will hring it in as illustrated in Fig. 6. Here, on the left, you start with the $41.25-\mathrm{MHz}$ sound trap, then $42.17-\mathrm{MHz}$
chroma at just about 50 percent on the left slope, $45.75-\mathrm{MHz}$ video carrier near 50 percent on the right slope. and the $47.25-\mathrm{MHz}$ lower adjacent channel sound trap on the right haseline-the hlip in the center is a simple transient. So there's your CTC 39X video if sweep alignment Not complex at all-if you have the right swep generator terminations.

But should you try and "diddle" the link and the remainder of the i.f. transformers and traps to conform to the conventional curve (Fig. 7), then your troubles have just begun. All the frequency markers described for Fig. 6 are still there including a $44.25-\mathrm{MHz}$ (off) center frequency at the top. But you should have seen the ummanageable, negative, touchy picture it produced! Peak-to-peak amplitude for the link. by the way, is $1(0)$ millivolts. while the overall i.f. alignment response is set for 2.5 V p-p.

Troubles over?

Hardly they ve really just begun. Unfortunately. many components of this particular i.f strip had been removed and replaced previously, including at least three or more sets of transistors-so here is where things became sticky. Having procured an acceptable demodulator probe for a $30-\mathrm{pF}, 1-\mathrm{MHz}$ scope-just any one won't do-we proceeded from the video detector back up the i.f. strip Distortion increased until we reached the collector of the ist i.f amplifier.

FIG. 6-AFTER FINAL ADJUSTMENTS, the overall curve should look much like this.

FIG. 7-THIS UNHAPPY ALTGNMENT was based on link response curve in Fig. 3.
then disappeared. This posititively proved two things:that signal from the tuner was both clean and adequate, and the agc itself could not he offering interference. since agc is applied only to the Ist i.f and any distortion would have been both visible and obviously amplitied. The 2nd i.f. amplifier, however, was a mess, and it was immediately changed for the fourth time

MONOCHROME AND COLOR ALIGNMENT
 MAYBE

When a poor picture is not caused by a bad tuner, old antenna faulty agc or other routine problem. But don't attempt alignment unless your markers are crystal controlled!

1. When fine tuning affects definition and perhaps contrast.
2. Poor monochrome pix and no color -possibly sound bars.
3. If new tuner is installed and i.f. bandpass is inadequate.
4. On test pattern where either high or low signals are weaker than the other end and induce trails or phase reversal.
5. With grainy pix, touchy vertical and horizontal sync.
6. When sweep gen with linear output can't produce correct tuner and videochroma i.f. responses.
7. At the point when chroma is smeary and indistinct-bandpass amplifier is usually out of alignment.
8. With monochrome picture smear and sound bars.
9. When the $3.58-\mathrm{MHz}$ color sync transformer becomes detuned and there is poor color lock or phase shift (coil or oscillator).
10. On occasions where hue (tint) control will not produce 30 -degree phase shifts on either side of mechanical center (burst amp.) 11. On appearance of the color barber pole showing $3.58-\mathrm{MHz}$ oscillator out of sync.
11. In older receivers when fine slanting lines indicate $3.58-\mathrm{MHz}$ traps are detuned.

DON'T

1. When a bad peaking coil or defective load resistor reduces definition in a video amplifier.
2. If multiple images or vertical bars are produced by poorly damped deflection yokes or horizontal-outputproduced transients.
3. With a weak picture, but good detail and no smear.
4. When fine tuning has little effect on the picture and overall quality is poor.
5. With some channels poor, others OK.
6. When fine lines cross the picture but don't affect sound-definition remains sharp.
7. Poor vertical or horizontal sync but fair to good picture.
8. Good monochrome, but no color.
9. When video is too weak or too contrasty (investigate agc)
10. With weak but distinct color (try bandpass amplifier or output).
11. When colors are clean but misplaced. (This is a phase problem only.)
12. With one or more colors missing. (Check demods or output amplifiers.)

The atoove 12 good rules for hoth alternatives can save hours of time and frustration. And do he careful never t add excessive age or too moch generator rf! Either distorts the response curve
(comfinued on page 68)

Why a Sylvania home training program may be

your best investment for a rewarding career in electronics

Over the years, Sylvania Resident Schools have trained thousands of men and women for key positions in the electronics field. Now, through Sylvania Home Training, you can receive the same high-quality career training at home. In your spare time. While you hold your present job. Remember, this training is designed with one purpose in mind - to give you the background you need to land the electronics job you really want!

2
AUTOTEXT TEACHES YOU ELECTRONICS RAPIDLY, EASILY.

AUTOTEXT, offered exclusively by Sylvania, is the proven step-by-step method of home training that canhelp you learn the basics of electronics quickly and easily.

3 cassette system

This innovative learning-by-hearing approach is a special option that adds an extradimension to AUTOTEXT. It's admost like having an instructor in your own home. As you play the cassette tapes, you'll have an instructor guiding you through your AUTOTEXT lessons. Explaining the material as you read it. Going over schematics with you, reinforcing the basic electricity and electronics study materials with you. Everything you need to know to get you started towards a highly regarded position as an electronics technician - all in an easy-to-understand, conversational tone.

4
 SPECIALIZED ADVANCED TRAINING

For those already working in electronics or with previous training, Sylvania offers advanced courses. You can start on a higher level without wasting time on work you already know.

5 PERSONAL SUPERVISION

All during your program of home study, your exams are reviewed and your questions are answered by Sylvania instructors who becomepersonally involved in your efforts and help you over any "rough spots" that may develop..

© HANDS-ON TRAINING

To give practical application to your studies, a variety of valuable kits are included in many programs. In Sylvania's Master TV/Radio Servicing Program, you will actually build and keep an all solid-state black and white TV set, and a color TV set. You also construct an oscilloscope which is yours to keep and use on the job.

7
 FCC LICENSE TRAINING MONEY BACK AGREEMENT

Take Sylvania's Communications Career Program - or enter with advanced standing and prepare immediately for your 1st, 2nd, or 3rd class FCC Radio Telephone License examinations. Our money-back agreement assures you of your money
back if you take, and fail to pass, the FCC examination taken within 6 months after completing the course.

CONVENIENT PAYMENT PLANS

You get a selection of tuition plans. And, there are never any interest or finance charges.

SEND ATTACHED POSTAGE PAID CARD TODAY! FREE DESCRIPTIVE BOOK YOURS WITHOUT OBLIGATION!

If reply card is detached send this coupon

GIB SYIVANIA

We had noticed that the demodulator probe had some detuning affect around the video detector, but with another i.f. change, almost any point in the i.f. strip that was touched by the probe would wipe out the picture. (If you haven't had this happen, it's a nasty experience!) Should you wish to make the time, you can now hegin checking and or substituting each coil and capacitor-we had previously shunted all bypasses-until you find whatever.s oscillating. Or. you can simply replace the printed circuit hoard.

Replace the PW200?

As a last resort, of course. you should replace the entire PW200 hoard. Naturally, this is a rather expensive procedure for the receiver owner, hut any halfway measure on a set that's been virtually butchered invites catastrophe. These PC boards will stand just so much abuse, then cracks appear. foil peels back, grounds loosen. and components become "unglued." This is especially true for any boards subject to tube heat or heavy current flow-often the same end difference in terms of thermal dissipation And if a $\$ 30$ or $\$ 50$ board can save a $\$ 700$ set, the effort and money are well spent, if this is the real solution to your (their) problems
When such a replacement is made, a spot i.f. alignment recheck is needed to see if markers are where they should be, the tuner
response matches, and traps are at their ap pointed places along the baseline. Remember, a transformer or coil shapes the handpass. but a trap anchors it! Obviously you should also check the composite video signal from a broadcast program. agc cutoff-to-saturation operation, and have a quick look at the chroma bandpass amplifiers to see if the new i.f. board has changed their tilt. This. however, can more easily be done with a clean color har generator and vectorscopoe-a subject we'll discuss much later in the future when certain equipment now in design and development reaches the market

Answering questions

If you're sharp, you should have at least one penetrating question: Why wouldn't the response curve have been affected by this obvious high-frequency oscillation? The answer is, that our problem child had to he somewhere in the frequency spectrum above 50 MHz . since 41 MHz to 47 MHz is. roughly, the bandpass intermediate frequency. Would a demodulator probe have shown the fault? A poorly designed one would not, nor are the vertical amplifiers of an inexpensive oscilloscope linear enough to produce true crt representations accurately much past the 3 rd video i.f. If you want to look successively at a / l the i.f. 's and tuner output. you'll need a scope with at least a 10 -millivolt vertical deffection factor to

FIG. 8-PRACTICAL DEMOD PROBE for your scope. Use full shielding and a short ground.
handle the average diode demodulator probe. My own D66 has an extended vertical range of 1 millivolt/div. and it does come in handy on critical occasions.

A useful demodulator probe

Since this column is writien to inform. not amaze. a schematic of an old Precision Apparatus demodulator probe I am currently using appears in Fig. 8. Remember, it's fully shielded and has a RG-62 A/U coaxial test equipment cable of approximately three feet between probe body and the BNC-coupled scope input. It's not perfect-a full-wave demodulator is of course more desirable. but this one will have to do until we can persuade some good test equipment manufacturer to design one that's more predictable. with better linearity, and less attenuation. How about it RCA. Sencore, B \& K. Tektronix, Hewlett-Packard. EICO, and all the rest? For a good demodulator probe. the TV service industry needs KOU !

R-E

R-E's Substitution guide for
 replacement transistors

PART XII

compiled by

ROBERT \& ELIZABETH SCOTT

ARCH-Indicates the Archer brand of semiconductors sold only by Radio Shack and Allied Radio stores. Allied Radio Shack, 2725 W. 7th St. Ft. Worth. Texas 76107

DM-D. M. Semiconductor Co., P.O Box 131. Melrose. Mass 02176

GE-General Electric Co.. Tube Product Div., Owensboro, Ky. 42301

ICC-International Components, 10 Daniel Street, Farmingdale, N.Y. 11735
R-International Rectifier. Semiconductor Div., 233 Kansas St., El Segundo, Calif. 90245
MAL—Mallory Distributor Products Co.. 101 S. Parker, Indianapolis. Ind. 46201

MOT-Motorola Semiconductors. Box 2963. Phoenix, Ariz. 85036

RCA-RCA Electronic Components. Harrison. N.J. 07029
SPR—Sprague Products Co. 65 Marṣhall St., North Adams, Mass. 01247
SYL-SyIvania Electric Corp.. 100 1st Ave Waltham. Mass. 02154
WOR-Workman Electronic Products. Inc Box 3828 , Sarasota, Fla. 33578
ZEN-Zenith Sales Co., 5600 W. Jarvis Ave Chicago, III. 60648
Radio-Electronics has done its utmost to in sure that the listings in this directory are as accurate and reliable as possible: however, no responsibility is assumed by Radio-Electronics for is use. We have used the latest manufacturers material available to us and have asked each manufacturer covered in the listing to check its accuracy. Where we have been supplied with corrections, we have updated the listing to include them. The first part of this Guide appeared n March 1973.

2N2600	NA	T-708	GE21	NA	NA	PTC 127	NA	SK 3114	RT-115	ECG 159	WEP 717	NA
2N2601	RS276-2023	T-52	GE-21	ICC-52	TR-88	PTC 103	HEP-52	SK 3114	RT-115	ECG 159	WEP 717	NA
2N2602	RS276-2023	T-52	GE-21	$1 \mathrm{CC}-52$	TR-88	PTC 103	HEP-52	SK 3114	RT-115	ECG 159	WEP 717	NA
2N2603	RS276-2023	T-52	GE-21	ICC-52	TR-88	PTC 103	HEP-52	SK 3114	RT-115	ECG 159	WEP 717	NA
2N2604	RS276-2023	T-52	GE-21	ICC-52	TR-88	PTC 103	HEP-52	SK 3114	RT-115	ECG 159	WEP 717	NA
2N2605	RS276-2023	T-52	GE-67	ICC-52	NA	PTC 127	HEP-52	SK 3114	RT-115	ECG 159	WEP 717	NA
2N2606	NA	NA	NA	NA	NA	NA	HEP-803	NA	NA	NA	NA	NA
2N2607	NA	NA	NA	NA	NA	NA	HEP-803	NA	NA	NA	NA	NA
2N2608	NA	NA	NA	NA	NA	NA	HEP-803	NA	NA	NA	NA	NA
2N2609	NA	NA	NA	NA	NA	NA	HEP-807	NA	NA	NA	NA	NA
2N2610	RS276-2009	T-53	GE-61	ICC-53	IRTR-51	PTC 132	HEP-53	SK 3122	RT-102	ECG 123A	WEP 735	ZEN 102
2N2611	NA	T-706	GE-27	NA	NA	PTC 144	HEP-714	NA	NA			NA
2N2612	NA	T-230	GE-3	NA	TR-01	PTC 105	HEP-625	SK 3009	RT-124	ECG 104	WEP-6	NA
2N2613	RS276-2003	T-632	GE-2	ICC-632	IRTR-05	PTC 102	HEP-632	SK 3004	RT-12	ECF 102A	WEP 250	ZEN 308
2N2614	RS276-2003	T-632	GE-2	ICC-632	TR-35	PTC 102	HEP-632	SK 3004	RT-121	ECG 102A	WEP 250	ZEN 308
2N2615	NA	T-718	GE-61	NA	NA	PTC 121	HEP-720	SK 3018	NA	NA	NA	NA
2N2616	RS276-2011	T-56	GE-61	ICC-56	NA	PTC 133	HEP-56	SK 3019	RT-113	ECG 108	WEP 56	ZEN 104
2N2617	RS276-2023	T-52	GE-62	ICC-52	IRTR-51	PTC 115	HEP-52	SK 3004	RT-102	ECG 123A	WEP 735	N
2N2618	RS276-2009	T-713	GE-63	ICC-713	NA	PTC 136	HEP-7 13	SK 3045	RT-110	ECG 154	WEP	NA
2N2619	NA	ECG 5476										
2N2621	NA	T-50	GE-2	ICC-2	TR-17	PTC 102	HEP-2	SK 3123	NA	ECG 160	WEP-637	ZEN 300
2N2622	NA	T-2	GE-2	ICC-2	TR-17	PTC 102	HEP-2	SK 3123	NA	ECG 160	WEP-637	ZEN 300
2N2623	NA	T-2	GE-2	ICC-2	TR-17	PTC 102	HEP-2	SK 3123	NA	ECG 160	WEP-637	EN 300
2N2624	NA	T-2	GE-2	ICC-2	TR-17	PTC 102	HEP-2	SK 3123	NA	ECG 160	WEP-637	000
2N2625	NA	T-2	GE-2	ICC-2	TR-17	PTC 102	HEP-2	SK 3123	NA	ECG 160	WEP 637	N 300
2N2626	NA	T-2	GE-2	ICC-2	TR-17	PTC 102	HEP-2	SK 3123	NA	ECG 160	WEP-637	ZEN 300
2N2627	NA	T-2	GE-2	ICC-2	TR-17	PTC 102	HEP-2	SK 3123	NA	ECG 160	WEP-637	300
2N2628	NA	T-2	GE-2	ICC-2	TR-17	PTC 102	HEP-2	SK 3123	NA	ECG 160	WEP-637	ZEN 300
2N2629	NA	T-2	GE-2	ICC-2	TR-17	PTC 102	HEP-2	SK 3123	NA	G 160	WEP-637	EN 300
2N2630	RS276-2003	T-3	GE-2	ICC-3	TR-17	PTC 102	HEP-3	SK 3123	NA	ECG 160	WEP-637	ZEN 300
2N2631	NA	NA	NA	ICC-S3010	NA	NA	HEP-S3010	NA	NA	NA	NA	ZEN 301
2N2632	NA	TS-3020	GE-66	NA	NA	NA	HEP-S5004	NA	NA	NA	NA	EN 207
2N2635	RS276-2003	T-3	GE-53	ICC-3	IRTR-85	PTC 109	HEP-3	NA	NA	ECG 160	WEP-637	ZEN 301
2N2636	NA	T-236	NA	NA	TR-01	NA	HEP-236	SK 3009	RT-147	ECG 179	WEP-WG6001	NA
2N2637	NA	T-236	NA	ICC-236	NA	NA	HEP-236	SK 3009	RT-147	ECG 179	WEP-WG60	1ZEN 301
2N2638	NA	T-236	NA	ICC-236	NA	NA	HEP-236	NA	RT-147	ECG 179	WEP-WG6001	1 NA
2N2639*	NA	T-729	GE-61	ICC-729	NA	PTC 121	HEP-729	SK 3039	RT-113	ECG 108	WEP-56	NA
2N2640*	NA	T-729	GE-61	ICC-729	NA	PTC 121	HEP-729	SK 3039	NA	ECG 108	WEP-56	ZEN 115
2N2641*	NA	T-729	GE-61	ICC-729	NA	PTC 121	HEP. 729	SK 3039	RT-113	ECG 108	WEP-56	ZEN 115
2N2642*	NA	T-728	GE-61	ICC-728	NA	PTC 121	HEP. 728	SK 3039	RT-113	ECG 108	WEP-56	ZEN 114
2N2643*	NA	T-728	GE-61	ICC-728	NA	PTC 121	HEP-728	SK 3039	RT-113	ECG 108	WEP-56	ZEN 114
2N2644*	NA	T-728	GE-61	ICC-728	NA	PTC 121	HEP-728	SK 3039	RT-113	ECG 108	WEP-56	ZEN 114
2N2645	NA	T-714	GE-18	NA	NA	PTC 121	NA	NA	NA	NA	NA	NA
2N2646	RS276-2029	T-310	NA	ICC-310	NA	NA	HEP-310	NA	NA	ECG 6401	NA	ZEN 129
2N2647	RS276-2029	T-310	NA	ICC-310	NA	NA	HEP-310	NA	NA	ECG 6409	NA	ZEN 129
2N2648	NA	T-2	GE-2	ICC-2	NA	NA	HEP-2	NA	RT-127	ECG 176	WEP-238	ZEN 300
2N2649	NA	NA	NA	NA	NA	NA	HEP-S3001	NA	NA	NA	NA	NA
2N2651	NA	T-56	GE-20	ICC-56	NA	PTC 136	HEP-56	SK 3039	RT-113	ECG 108	WEP-56	ZEN 104
2N2652*	NA	T-714	GE-18	NA	NA	PTC 123	HEP-S3001	NA	NA			
2N2654	RS276-2005	T-636	GE-9	ICC-636	TR-17	PTC 107	HEP-636	SK 3006	NA	ECG 160	WEP-63	ZEN 312
2N2656	RS276-2009	T-50	GE-20	ICC-50	IRTR-51	PTC 136	HEP-50	SK 3122	RT-102	ECG 123A	WEP-735	ZEN 100
2N2657	NA	TS-3020	GE-66	NA	NA	NA	HEP-S3002	NA	NA	NA	NA	NA
2N2658	NA	NA	NA	NA	NA	NA	HEP-S3302	NA	NA	NA	NA	NA
2N2659	NA	T-238	NA	ICC-238	NA	NA	HEP-238	NA	NA	NA	NA	ZEN 329
2N2660	NA	T-239	NA	ICC-239	NA	NA	HEP-239	NA	NA	NA	NA	NA
2N2661	NA	T-239	NA	ICC-239	NA	NA	HEP-239	NA	NA	NA	NA	NA
2N2662	NA	T-238	NA	ICC-238	NA	NA	HEP-238	NA	NA	NA	NA	EN 239
2N2663	NA	T-239	NA	ICC-239	NA	NA	HEP-239	NA	NA	NA	NA	NA
2N2664	NA	T-239	NA	ICC-239	NA	NA	HEP-239	NA	NA	NA	NA	NA
2N2665	NA	T-238	NA	ICC-238	NA	NA	HEP-238	NA	NA	NA	NA	ZEN 329
2N2666	NA	T-239	NA	ICC-239	NA	NA	HEP-239	NA	NA	NA	NA	NA
2N2667	NA	T-239	NA	ICC-239	NA	NA	HEP-239	NA	NA	NA	NA	NA
2N2671	RS276-2003	T-3	GE-9	ICC-3	NA	PTC 107	HEP-3	SK 3006	NA	ECG 160	WEP-637	ZEN 301
2N2672	RS276-2003	T-635	GE-9	ICC-635	NA	PTC 107	HEP-635	SK 3006	NA	ECG 160	WEP-637	ZEN 311
2N2673	RS276-2009	T-50	GE-61	$1 \mathrm{CC}-50$	IRTR-51	PTC 121	HEP-50	SK 3122	RT-102	ECG 123A	WEP-735	ZEN 100
2N2674	RS276-2023	T-52	GE-61	ICC-52	IRTR-51	PTC 121	HEP-52	SK 3122	RT-102	ECG 123A	WEP-735	NA
2N2675	RS276-2009	T-50	GE-61	ICC-50	IRTR-51	PTC 121	HEP-50	SK 3122	RT-102	ECG 123A	WEP. 735	ZEN 100
2N2676	RS276-2009	T-50	GE-61	ICC-50	IRTR-51	PTC 121	HEP-50	SK 3122	RT-102	ECG 123A	WEP-735	ZEN 100
2N2677	RS276-2009	T-50	GE-61	ICC-50	IRTR-51	PTC 121	HEP-50	SK 3122	RT-102	ECG 123A	WEP-735	ZEN 100
2N2678	RS276-2009	T-50	GE-61	ICC-50	IRTR-51	PTC 121	HEP-50	SK 3122	RT-102	ECG 123A	WEP-735	ZEN 100

	ARCH	- DM	G-E	ICC	IR	MAL	MOT	RCA	A SPR	SYL	WOR	ZEN
2N2691	NA	T-232	NA	NA	NA	NA	NA	NA	RT-147	ECG 179	WEP-WG600	01 NA
2N2692	RS276-2009	T-50	GE-62	ICC-50	IRTR-21	PTC 121	HEP-50	SK 3122	RT-102	ECG 123A	WEP-735	ZEN 100
2N2693	RS276-2009	T-50	GE-61	ICC-50	IRTR-21	PTC 121	HEP-50	SK 3122	RT-102	ECG 123A	WEP-735	ZEN 100
2N2694	NA	T-718	GE-61	NA	IRTR-21	PTC 121	HEP-729	NA	NA	NA	NA	NA
2N2695	RS276-2023	T-52	GE-22	ICC-52	NA	PTC 103	HEP-52	SK 3114	RT-115	ECG 159	WEP-717	NA
2N2696	RS276-2023	T-52	GE-22	ICC-52	NA	PTC 103	HEP-52	SK 3114	RT-115	ECG 159	WEP-717	NA
2N2697	NA	NA	NA	NA	NA	NA	HEP-S5000	NA	NA	NA	NA	NA
2N2698	NA	NA	NA	NA	NA	NA	HEP-S5000	NA	NA	NA	NA	NA
2N2699	RS276-2001	T-641	GE-66	ICC-641	TR-08	PTC 103	HEP-641	SK 3011	RT-119	ECG 101	WEP-641	ZEN 315
2N2706	RS276-2003	T-632	GE-53	ICC-632	\|RTR-85	PTC 135	HEP-632	SK 3004	NA	ECG 158	WEP-630	ZEN 308
2N2707	NA	T-255	GE-59	NA	TR-08	PTC 108	HEP-6328641	SK 3010	NA	ECG 158	WEP-630	NA
2N2708	RS276-2011	T-56	GE-17	ICC-56	NA	PTC 133	HEP-56	SK 3019	RT-113	ECG 108	WEP-56	ZEN 104
2N2709	RS276-2021	T-51	GE-21	ICC-51	NA	PTC 103	HEP-51	SK 3114	RT-115	ECG 159	WEP-717	ZEN 101
2N2710	RS276-2011	T-56	NA	ICC-56	NA	PTC 133	HEP-56	SK 3039	RT-113	ECG 108	WEP-56	ZEN 104
2N2711	RS276-2009	T-722	GE. 10	1CC-722	NA	PTC 121	HEP-722	SK 3124	RT-113	ECG 108	WEP-56	ZEN 110
2N2712	RS276-2009	T-724	GE-17	ICC-724	NA	PTC 121	HEP-724	SK 3124	RT-113	ECG 108	WEP-56	ZEN 112
2N2713	RS276-2016	T-54	GE-20	ICC-54	IRTR-33	PTC 123	HEP-54	SK 3124	RT-102	ECG 123A	WEP-735	NA
2N2714	RS276-2016	T-54	GE-20	ICC-54	\|RTR-33	PTC 123	HEP-54	SK 3124	RT-102	ECG 123A	WEP-735	NA
2N2715	RS276-2009	T-722	GE-60	ICC-722	\|RTR-33	PTC 126	HEP-722	SK 3124	RT-113	ECG 108	WEP-56	ZEN 110
2N2716	RS276-2009	T-724	GE-61	ICC-724	IRTR-33	PTC 121	HEP-724	SK 3124	RT-113	ECG 108	WEP-56	ZEN 112
2N2717	RS276-2003	T-3	GE-9	ICC-3	TR-17	PTC 107	HEP-3	NA	NA	ECG 160	WEP-637	ZEN 301
2N2719	RS276-2009	T. 50	GE-20	ICC-50	IRTR-51	PTC 136	HEP-50	SK 3122	RT-102	ECG 123A	WEP-735	ZEN 100
2N2720	NA	T-53	GE-20	NA	NA	PTC 136	HEP-S0007	NA	NA	NA	NA	NA
2N2721	NA	T-53	GE-20	NA	NA	PTC 136	HEP-S0007	NA	NA	NA	NA	NA
2N2722*	NA	T-53	GE-20	NA	NA	PTC 136	HEP-729	NA	NA	NA	NA	NA
2N2726	NA	TS-3021	GE-27	ICC-S3021	NA	PTC 117	HEP-S3021	NA	NA	NA	NA	ZEN 208
2N2727	NA	T-706	GE-27	NA	NA	NA	HEP-S3021	NA	NA	NA	NA	NA
2N2728	NA	T-231	GE-4	NA	NA	PTC 106	HEP-G6002	SK 3012	NA	ECG 105	WEP-233	NA
2N2729	RS276-2011	T-56	GE-61	ICC-56	NA	PTC 133	HEP-56	SK 3018	RT-113	ECG 108	WEP-56	ZEN 104
2N2730	NA	T-231	GE-4	NA	NA	PTC 106	NA	SK 3012	NA	ECG 105	WEP-233	NA
2N2731	NA	T-231	GE-4	NA	TR-03	PTC 106	HEP-G6002	SK 3012	NA	ECG 105	WEP-233	NA
2N2732	NA	T-231	GE-4	NA	TR-03	PTC 106	HEP-G6002	SK 3012	NA	ECG 105	WEP-233	NA
2N2781	NA	NA	NA	NA	NA	NA	HEP-S3021	NA	NA	NA	NA	NA
2N2782	NA	NA	NA	NA	NA	NA	HEP-S3021	NA	NA	NA	NA	NA
2N2783	NA	T-251	NA	NA	TR-12	NA	HEP-S3021	NA	NA	ECG 126	WEP-635	NA
2N2784	RS276-2011	T-56	GE-17	ICC-56	TR-24	PTC 133	HEP-56	SK 3039	RT-113	ECG 108	WEP-56	ZEN 104
2N2786	NA	T-2	NA	ICC-2	TR-17	PTC 107	HEP-2	NA	NA	ECG 160	WEP-637	ZEN 300
2N2787	NA	T-53	GE-20	NA	NA	PTC 136	HEP-S3011	NA	NA	NA	NA	NA
2N2788	NA	T-714	GE-18	NA	NA	NA	HEP-S3011	NA	NA	NA	NA	NA
2N2789	NA	T-714	GE-18	NA	NA	NA	HEP-S3011	NA	NA	NA	NA	NA
2N2790	NA	T-53	GE-20	NA	NA	PTC 136	HEP-S3001	NA	NA	NA	NA	NA
2N2791	NA	T-53	GE-20	NA	NA	PTC 136	HEP-S3001	NA	NA	NA	NA	NA
2N2792	NA	T-53	GE-20	NA	NA	PTC 136	HEP-S3001	NA	NA	NA	NA	NA
2N2793	NA	T-231	GE-4	NA	TR-03	PTC 106	HEP-G6002	SK 3012	NA	ECG 105	WEP-233	NA
2N2795	RS276-2003	T-3	GE-51	ICC-3	TR-17	PTC 107	HEP-3	NA	NA	ECG 160	WEP-637	ZEN 301
2N2796	RS276-2003	T-3	GE-51	ICC-3	TR-17	PTC 107	HEP. 3	NA	NA	ECG 160	WEP-637	ZEN 301
2N2797	NA	T-2	GE-51	ICC-2	TR-17	PTC 107	HEP-2	NA	NA	ECG 160	WEP-637	ZEN 300
2N2798	NA	T-2	GE-51	ICC-2	TR-17	PTC 107	HEP-2	NA	NA	ECG 160	WEP-637	ZEN 300
2N2799	NA	T-2	GE-51	ICC-2	TR-17	PTC 107	HEP-2	NA	NA	ECG 160	WEP-637	ZEN 300
2N2800	RS276-2021	T-51	GE-67	ICC-51	TR-88	PTC 141	HEP-51	SK 3114	RT-115	ECG 159	WEP-717	ZEN 101
2N2801	RS276-2021	T-51	GE-67	ICC-51	TR-88	PTC 141	HEP-51	SK 3114	RT-115	ECG 159	WEP-717	ZEN 101
2N2802**	NA	T-715	GE-22	ICC-715	TR-20	PTC 131	HEP-715	SK 3118	RT-126	ECG 106	WEP-637	ZEN 106
2N2803**	NA	T-715	GE-22	ICC. 715	TR-30	PTC 131	HEP-715	SK 3118	RT-126	ECG 106	WEP-637	ZEN 106
2N2804**	NA	T. 715	GE-22	ICC-715	TR-20	PTC 131	HEP-715	SK 3118	RT-126	ECG 106	WEP-637	ZEN 106
2N2805*	NA	T-715	GE-22	ICC-715	TR-20	TC 131	HEP. 715	SK 3118	RT-126	ECG 106	WEP-637	ZEN 106
2N2806 ${ }^{\circ}$	NA	T. 715	GE-22	ICC-715	TR-20	PTC 131	HEP-715	SK 3118	RT-126	ECG 106	WEP-637	ZEN 106
2N2807*	NA	T-715	GE-22	ICC-715	TR-20	PTC 131	HEP-715	SK 3118	RT-126	ECG 106	WEP-637	ZEN 106
2N2808	NA	NA	NA	NA	NA	NA	HEP-720	NA	NA	NA	NA	NA
2N2809	NA	NA	NA	NA	NA	NA	HEP-720	NA	NA	NA	NA	NA
2N2810	NA	NA	NA	NA	NA	NA	HEP-720	NA	NA	NA	NA	NA
2N2811	NA	NA	NA	NA	NA	NA	HEP-S5004	NA	NA	NA	NA	NA
2N2812	NA	NA	NA	NA	NA	NA	HEP-S5004	NA	NA	NA	NA	NA
2N2826	NA	NA	NA	NA	NA	NA	HEP-238	NA	NA	NA	NA	NA
2N2827	NA	NA	NA	NA	NA	NA	HEP-238	NA	NA	NA	NA	NA
2N2828	NA	TS-3020	GE-66	NA	NA	NA	HEP-S5000	NA	NA	NA	NA	NA
2N2829	NA T	TS-3020	GE-66	NA	NA	NA	HEP-S5000	NA	NA	NA	NA	NA
2N2831	RS276-2009	T-50	GE-17	$1 \mathrm{CC}-50$	TR-21	PTC 136	HEP-50	$\text { SK } 3024$	RT-114	ECG 128	WEP-724 2	$\text { ZEN } 100$
2N2832	NA	T-626	NA	ICC-626	NA	PTC 136	HEP-626	NA	RT-127	ECG 121	WEP-232	NA
2N2833	NA	T-236	NA	ICC-236	NA	NA	HEP-236	NA	NA	NA	NA	NA
2N2834	NA	NA	NA	NA	NA	NA	HEP-642	NA	NA	NA	NA	NA

"Indicates a dual transistor for high-speed switching, diff amplifier etc. Likely to be a matched pair. Use two of the type specified, matching when necessary, on a curve tracer or lab-type transistor checker.

R-E's Service Clinic

Aristotle and the Big Bottle

Or, no raster; Plenty high voltage

by JACK DARR
SERVICE EDITOR

This column is for your service problems-TV, radio, audio or general and industrial electronics. We answer all questions individually by mail, free of charge, and the more interesting ones will be printed here.

If you're really stuck, write us. We'll do our best to help you. Don't forget to enclose a stamped, self-addressed envelope. If return postage is not included, we cannot process your question. Write: Service Editor, Radio-Electronics, 200 Park Ave. South, New York 10003.

ARISTOTIE WAS AN ANCIENT GREFK PHIL osopher. One of a group that left us some valuable ideas. Their personal habits would get them an X-rating now, but their other ideas were pretty good. Aristotle's gave us a two-valued system of logic. This hung on for quite a while. Everything was either black or white. A or B, on or off-nothing in between. Sometimes this is good, sometimes had. At any rate, it makes a good illustration of methods for dealing with one problem that has become a lot more common lately.

In far too many cases, we have a tendency to assume that only one thing can cause a given trouble. We overlook possible alternative causes. This particular problem was very rare; however, it is showing up more and more in the Clinic mail. So I thought it would be a very good idea to take a look at other solutions.

Here's the problem: a complete loss of raster. High voltage may be completely missing, or very low. Yet, when we check out the high-voltage supply, or change everything in it, we still have the same problem-no raster! So. the thing to do now is revise our original (and quite logical) conclusion, that there was trouble in the high-voltage supply, and look for another cause: " B ", since " A " didn"t work! Actually, of course, the high-voltage supply itself does provide most of these problems. but don't overlook B. It’s still present.

The big bottle

The other possible cause is a defect in the hias supply of the picture tube! If the picture-tube bias isn ${ }^{\circ}$ correct. the Big Bottle can draw so much current that it loads down the high-voltage to the point where it disappears. "So much current", in this cases, is a whopping $2-\mathrm{mA}$, or something in that area! That doesn't sound like a lot. However, maximum rated current for a standard 3 -gun color picture tube is $1600-\mu \mathrm{A}-0.0016 \mathrm{~mA}$! In terms of power. where we multiply voltage by current, using 25,000 voits for "E' we have a very respectable amount of load
indeed, at minute currents. So our high-voltage supply simply collapses under such a load, and the raster goes out.

Possible causes

There are several things that can cause this condition. Anything that upsets the dc voltages on the video amplifier will vary the picture tube cathode voltages: upset the de voltages on the three color difference amplifiers, and you vary the voltage on the grids of the picture tube. This refers to the original circuit. The later "RGB" circuitry is subject to the same kind of troubles. though with different parts causing it.

In the original circuitry, we run the cathode at around +300 volts and grids at around +200 volts. (ballpark figures. of course) It doesn't take much of a change in the right direction to cause trouble. This Big Bottle is a plain old vacuum tube. after all. If its grid is made more positive, it draws more "plate current".

In this circuit, we have two possible variables; if we make the grids more positive, up goes the beam current. Also, if we make the cathodes less positive, we are actually making the grids more positive, since the grid vollage is referred to the cathode voltage! The actual bias is the difference between the grid and cathode voltages, regardless of what these voltages read to ground!

So: let's assume that something upsets the bias on all three of the differential amplifiers at once. (In many circuits, the horizontal blanker can do this) Suppose this causes their grids to go highly negative. Here, too, we can have a cathode problem: the blanking is fed to the common cathode; make the cathodes more positive, and you ve made the grids more negative. So. the differential-amplifier tubes are cut off; the ir plate current goes down. and naturally, their plate voltage "goes up" (more positive). So does the grid voltages of the picture tube, since these are directly coupled to the differentialamplifier plates. Up goes the heam cur-
rent of the picture tube and, in many cases, out goes the raster.

We can get the same thing in the video- amplifier stage. Let's have a fault, such as a short in the video amplifier tube, that makes it draw very high current. Its plate voltage goes "down" or more negative; so, the picture tube cathodes follow, leaving the picture tube grids much more positive! Same result. An open in the "video peaking transformer" used in a great many video output circuits can even leave the video amplifier with zero plate voltage, and Boom.

In some cases, where the fault isn ${ }^{\circ} \mathrm{t}$ quite as severe as these, you will get a smaller change in picture tube bias. This will cause a "flare" symptom.

The picture will get very bright, and the brightness control will have no effect on it. If the high-voltage supply happens to be in very good shape with a high reserve power rating, this can happen. In a few instances. this has been seen to cause flaring, with a small amount of raster pull-in on the sides. These seem to be contradic tory symptoms, but looked at in this light, no.

The same thing can show up in the later model sets using RGB circuitry. In these, the grids are common, and generally tied together. Video and color signals all go to the three separate cathodes. But. you can still have this type of trouble. It may be from a different part, but the same thing can happen.

More and more people are learning that

 a replacement is an improvement with Amperex tubes.
... remember...there's an Amperex replacement tube for any socket in any set you're likely to service. TV, Hi Fi, FM or AM, House Radio, Car Radio, P.A. System or Tape Recorder. Imported or Domestic!

ATO a north amfrican phillips Company

[^1]This is the major problem that seems to be getting the boys-they don't remember this! As I said before, this hind of trouble used to be quite rare. Lately, the Clinic mail is full of them, and I have run into at least a dozen on my own bench, this year! (I don't explain ‘em, I just tell 'em.)
There's a quick check for this, thank goodness. When you have made the initial tests and substitutions (the easy ones), with no results, just pull the base off the picture tube and recheck for high voltage. In sets with series heaters, you'll have to pull the high-voltage lead off the tube. If the high-voltage jumps back up to normal, there you are. Go thou and check all of the bias voltages on the base of that picture tube!

The worst problem seems to be that we don`t suspect this; or, we just plain don't rememer it! So, remember the first Ari, and his two-valued logic; there is always more than one cause for any kind of trouble. If you don't dig it out in the high-voltage supply itself, go chase some biases.

R-E

reader questions

NO BRIGHTNESS CONTROL

I can't turn the brightness off in this Olympic CC3340. Even the kine bias switch has no effect. Picture tube OK, other tubes OK. I'd like a schematic on this, too; can't find one in Canada_-J.F., Montreal, Canada.

This particular model of Olympic uses an RCA CTC- 15 chassis. You can use this or write to Olympic International Ltd., 88-89 Union Turnpike, Ellendale N.Y. 11227.

Brightness control: Check the grey-scale adjustments, especially the selting of the screen controls on the picture tube. If someone has turned all three of these full up. you might not be able to turn the raster off.

If these are OK, then you have a bias problem. Read the cathode and grid voltages on the picture tube. Cathodes should be about +345 volts, grids about +160 volts. If the grids are "too positive" (high), or the cathodes "too negative" (low), the picture tube will be near to "zero-bias". and the control won't work.

ELECTROLYTIC BLOWS

The customer said there was a Bang, and this Truetone WEG-2297A 27 went out. When I turned it on, I got a weird raster, with a dark spot in the center. Opening it up, I found that a small electrolytic capacitor on the high-
voltage/sweep module had exploded. It's connected to the cathode of the 6GK6 horizontal output. I replaced it, and the new one exploded, too! I have no schematic on this set. What's causing this?G.W., Waldron, Ark.

Schematic on this one is in Sams 1216-3. This capacitor is apparently used to hypass the horizontal output tube cathode. It returns to ground through a little heater in the circuit breaker. If this heater is open, the pulse voltage will blow this little capacitor: $100-\mu \mathrm{F}, 10 \mathrm{~V}$. Check from pin 2 of the sweep module to ground for not more than 1.3 shms.

NO RED

Everything else works, hut I can't get any red in the picture on this RCA CTC-16XL. As you said, I checked all of the dc voltages. The blue and green grids on the picture tube are OK at +160 volts, but the red grid is down to +82 volts. The 6GU7 is OK, and the plate resistor ($27,000 \mathrm{ohms}$) is OK. Only +82 volts on the plate of the $R-Y$ amplifier. What goes now? F.C. Augusta, Ga.

Old saying: if plate voltage is low, tube and plate load resistor OK, then check cathode and grid circuits. (You're losing the red becaluse the red gun of the picture tuhe is plain old cut off. A "drop" in hias from +160 V . $10+82 \mathrm{~V}$ is enough to stop this gun
from conducting.)
Cathode circuit of all three differ-ence-amplifier tubes is common, but check it anyhow. Also check the grid circuit. I think you may find that little choke. L34, is open. This would upset the bias on this section of the 6GU7. which upsets the picture tube grid bias. (Feedback: that was it!!)

REPLACEMENT TRANSISTOR

One of the output transistors is shorted in this Capitol SA-707T stereo record player. No data; transistor has "274 CV61" on it. What will replace it?-D.F., Pomfret, Conn.

Service data on this is in Sams 973-4. However, this transistor has only S-1570. no substitute given. From the voltages, etc.. I'd try an RCA SK3020. It's an npn. in a TO-5 case. with collector connected to case. (Don't forget the insulator and silicone grease on the heat-sink!)

PILOT LIGHTS OUT

An RCA RZC-275W radio came in. The only thing wrong with it is the pilot lights. l've checked the circuit, without a schematic, and can't figure it out.-P.L., St. Cloud, Minn.

The schematic for this is in Sams 1075-6 if you need it. The pilot-light circuit is a bit unusual in this set. This uses two 45 -volt lamps which draw 55mA apiece. These are shunted by a pair
of 2200 -ohm resistors and are in series with the tuning-meter lamp, a 12.6 volt $75-\mathrm{mA}$ type. This whole string is across the 117 -volt line, with a 220 -ohm 2 -watt resistor in series.

These are special lamps; the 45 volt types are RCA part No. 165296. and the 12.6 -volt one is No. 165295 . see your RCA parts distributor.

CRYSTALS? OSCILLATOR OR
 FILTER?

This isn't a regular question about a problem, but it's been hugging me for some time. Why isn't a crystal used alone in a color television set, instead of being used as an oscillator? I get different opinions from people that I ask-R.R., Dyess $A F B$, Tex.

A crystal. to simplify things, can be thought of as a very sharp resonant circuit. The "Q" (figure of merit is tremendous. So, we can use one to lock the frequency of an oscillator, by substituting the crystal for the resonant circuit.

We can also use it as a very narrow filter, by putting it in series with the incoming signal. In quite a few sets, they pass the actual $3.58-\mathrm{MHz}$ burst itself through the crystal, and then amplify it in the following stage.

With either method, we come out with what we must have: a signal which is locked to the station burst frequency for reference. R-E

IN WRBE-WBAPPING OBS THE LINE.

COILTITE® SLEEVES

hand wrapping

WIRE CUT AND STRIP CABLE STRIPPING

OK MACHINE AND TDOL CORPORATIDN
3455 CONNER STREET, BRONX, NEW YORK, N.Y. 10475 U.S.A.

CRE- The only home-study college-level training

roypram which dives you inelactroiic circuit desing

only CREI offers you a complete college-Ivevel Electronic Design Laboratiory to speed your learning

Electronic circuit design-source of all new development in the application of electronics to new products and services. Without this skill, we would be unable to monitor the heartbeat of men in space. Without it, the computer revolution would never have occurred. And we would have yet to see our first TV show. Yet, only CREI teaches electronic circuit design at home.

ELECTRONIC CIRCUIT DESIGN

A key skill which paces our nation's progress in countless fields-from pollution control to satellite tracking to modern medicine to exploring the ocean's depths. And beyorid. A skill which you must have to move to the top in advanced electronics.

CREI programs open up

 new worlds of opportunity for you.In addition to electronic circuit design, CREI provides you with a full advanced electronics education in any of thirteen fields of specialization you choose. Communications, computers, space operations, television, nuclear power, industrial electronics-to mention just a few of the career fields for which CREI training is qualifying. With such preparation, you will have the background for a career which can take you to the frontiers of the nation's most exciting new developments. And around the world.

This free book can change your life. Send for it.
If you are a high-school graduate (or equivalent) and have previous training or experience in electronics, then you are qualified to enroll in a CREI program to move you ahead in advanced electronics.

Send now for our full-color, eighty page book on careers in advanced electronics. In it, you will find full facts on the exciting kinds of work which CREI programs open up to you. And full facts on the comprehensive courses of instruction, the strong personal help, and the professional laboratory equipment which CREI makes available to you. All at a surprisingly low tuition cost.
And when you have it, talk with your employer about it. Tell him you're considering enrolling with CREI. He'll undoubtedly be happy to know you are planning to increase your value to him. And he may offer to pay all or part of your tuition cost. Hundreds of employers and government agencies do. Large and small. Including some of the giants in electronics. If they are willing to pay for CREI training for their employees, you know it must be good.
Send for Advanced Electronics today. You'll be glad you did.

CREI Dept. E. 1402 E
3939 Wisconsin Avenue
Washington, D.C. 20016
Rush me your FREE book describing my opportunities in advanced electronics. I am a high school graduate.

Name Age \qquad
Address \qquad City \qquad State \qquad ZIP \qquad
If you have previous training in alectronics, check here \square

CAPITOL RADIO ENGINEERING INSTITUTE

Employed by
Type of Present Work
WASHINGTON, D.C 20016

ㅌM•EAME makes replacing cartridges a snap. We offer virtually all originals or exact replacements. No one else comes close.

Here's an example of what that means to you:

THE SUBSTITUTE

ASTATIC 357D

Comes with red turnover needle. Will not accept original needle. Has no replacement bracket should original break. Plug has to be wired to tone arm which is time-consuming and can cause phase reversal if done incorrectly.

UNRETOUCHED PHOTO

> You can save precious time and a lot of extra effort when you specify ElectroVoice. You don't have to make embarrassing excuses for a cartridge that doesn't appear exactly like the original. There's no unusual handling or installation. The result is that you have the best chance to maximize cartridge profits and customer satisfaction with EV • Game.

> So see your local distributor for Electro-Voice replacement cartridges. Also ask him for the EV - Game catalog. It's the most comprehensive and easiest-to-use. Simplifies selection of nearly 700 cartridges. And write to us for our revealing Replacement Cartridge Comparison Chart. Learn more about how we make it a snap for you to replace cartridges. EV • Game, Box 711, Freeport, N.Y. 11520.

OEV.GAME inc.

[^2]
HEATHKIT COLOR TV
 (continued from page 37)

horizontal and vertical sync pulses generated for the display sync. The digital output signal is coupled through the switch to the display driver in place of the channel/time display signal. The pattern that appears on the screen is an array of small, well-defined white dots.

LC bandpass filter for i.f. strip

Perhaps the most important function of the i.f. amplifier in a color television receiver is selectivity. Fig. 7-a shows the i.f. selectivity curve of a typical modern high-quality color TV. Transistor amplifiers provide the gain. Tuned LC circuits distributed through the amplifier handle the amplitude shaping. A very narrow trap tuned to 39.75 MHz rejects the picture carrier of the adjacent upper channel. In a similar way a trap tuned to 47.25 MHz rejects the sound carrier of the lower adjacent channel. The other adjacent channel frequencies are minimized by the normal skirt selectivity of the TV set.

LOOK ING AT THE GR-2000 from the rear all the modules are visible. One has been unplugged.

The i.f. amplifier used in the GR-2000 is totally different. It uses a single bandpass filter as its sole response-shaping element. Figure 7-b shows the selectivity curve of this i.f. amplifier. Note the positions of the critical frequency points in the curve. Adjacent channel carriers are located a minimum of 60 dB down. The circuit of the amplifier as used in the GR-2(H0) is in Fig. 8.

Looking at Fig. 8 we see that the tuner's i.f. output is coupled to the filter through transistor Q325, a common-base circuit. This transistor provides some gain, and presents a constant impedance to both the tuner's output and the input to the filter. It also isolates these two stages.

The LC filter is positioned ahead of the 2 -stage IC amplifier. These two IC's provide plenty of gain, a synchronous detector, an afc output, and a choice of high or low-impedance outputs for composite video. A broadly tuned transformer is used to couple these two IC stages. This makes the transtormer easy to adjust and no spe-
cial instruments are needed
The $4.5-\mathrm{MHz}$ sound output signal is taken fiom the low-impedance output of IC326. Coming off the same output is a $4.5-\mathrm{MHz}$ trap that is coupled to Q326, an emitter-follower stage that is used to drive the age and chroma.

The varactor tuner

The uhf/vhf varactor tuner differs from conventional switch-type tuners visually. in that no mechanical tuning is used. Instead, the circuits are tuned by feeding preset de voltages to them. Digital logic circuits are used to direct the preset tuning voltages to the tuner to select the desired channel.

A 4-bit up-down counter (see Fig. 9) IC202, can count from binary (0000 to binary 1111. A total of 16 different binary numbers can appear at its four output lines. When a negative-going pulse is applied to pin 5 of IC202 (the counter input), the counter will count up one binary number and remain there until another pulse is applied. In the same way, when a negative-going pulse is applied to the pin 4 of IC202 (the countdown input), the counter will count down one binary number and slay there.
When the counter reaches 1111 while counting up it starts over on the next pulse with 0000 . In the same way when counting down if the counter reaches 0000 , it starts over at 1111 on the next pulse.

The pulses to activate the counter are produced by a $2-\mathrm{Hz}$ multivibrator made up of Q217 and Q218. They are applied to the counter when either S152, the up-channel switch; or S151. the down-channel switch. on the front of the set is depressed.

The 4-bit information at the outputs of the up-down counter is fed to the four input terminats of IC203, a 4 -line to 16 -line decoder. One of the 16 output lines is selected for each of the different 16 binary numbers applied to its four input lines.

FROM THE SIDE the digital programming circuitry becomes visible. Remote control and clock circuits are also here.

Each of these 16 output lines is connected to a transistor diode switch (Q20) through Q216 and D249 through D264) that will switch the tuning voltage from one of the 16 preset tuning controls to the tuner.

ELECTRONIC TECHNICIANS!

Raise your professional standing and prepare for promotion! Win your diploma in

ENGINEERING MATHEMATICS

from the Indiana Home Study Institute

We are proud to announce two great new courses in Engineering Mathematics for the electronic industry.

These unusual courses are the result of many years of study and thought by the President of Indiana Home Study, who has personally lectured in the classioom to thousunds of men, from all walks of life, on mathematics, and electrical and electronic engincering.

You will have to see the lessons to appreciate them!
NOW you can master engineering mathematics and actually enjoy doing it W'E ARE THIS SURE: you sign no contracts-you order your lessons on a money-back guarantee.
In plain language, if you aren't satisfied you don's pay, and there are no strings attached.
Write today for more information and your outline of courses.
You have nothing to lose, and everything to gain?

The INDIANA
 HOME STUDY INSTITUTE

Dept. Re-2, P.O. Box 1189, Panama City, Fla 32401
(turn page)

Fastest gun tester...

and rejuvenator... only \$189*

It's the new RCA WT-333A Television Picture Tube Tester/ Rejuvenator that:

- Tests red, blue and green color guns simultaneously with RCA's unique CR III "SIMUL-TEST" 3-meter system.
- Provides new, more effective 3 -step rejuvenation function and newly designed "no-delay" G1 shorts removal function.
- Reveals H-K leakage other testers may miss, with special high-voltage surge circuit.
- Performs "brightness," "life" and other evaluation-type tests.
- Tests over 1800 TV picture tubes - including RCA's new "Precision lin-Line" and other in-line types.
- Includes built-in socket plus four socket adapters at no extra charge to cover most of today's picture tubes.
To buy: order the WT-333A from any one of the more than 1,000 Authorized RCA Distributors worldwide. For more information, write RCA Electronic Instruments Headquarters, Harrison, N.J. 07029.
* Optional Price

Es

Transistor Analyzer model 212
Factory Wired \& Tested- $\$ 24.50$
Easy-to-Assemble Kit- $\$ 16.00$
YOU DON'T NEED A BENCH FULL OF EQUIPMENT TO TEST TRANSISTOR RADIOS! All the faclilities you need to check the transistors themselves - and the radios or other circuits in which they are used - have been ingeniously engineered into the compact, 6 -inch high case of the Model 212. It's the transistor radio troubleshooter with all the features found only in more expensive units. Find defective transistors and circuit troubles speedily with a single, streamlined instrument instead of an elaborate hook-up.
Features:
Checks all transistor types - high or low power. Checks DC current gain (beta) to 200 in 3 ranges. Checks leakage. Uni-1 versal test socket accepts different base configurations. Identifies unknown transistors as NPN or PNP.
Dynamic test for all transistors as signal | amplifiers (oscillatnr check), in or out of circuit. Develops test signal for AF, IF, or RF circuits. Signal traces all circuits. Checks condition of diodes. Measures battery or other transistor-circuit powersupply voitages on 12 -volt scale. No ex. crnait drain or ther $D C$ currents to 80 circuit drain or other DC currents to 80 miliamperes. Supplied with three exter. pair of test leads for measuring voltage pair of test leads for measuring voltage and current. Comes complete with
EMC, 625 Broadway, New York 12, N. Y.
Send me FREE catalog of the complete value-packed EMC line, and name of ocal distributor
NAME \qquad RE-2

Now...the most enjoyable do-it-yourself project of your life-a Schober Electronic Organ!

You'll never reap greater reward, more fun and proud accomplishment, more benefit for the whole family, than by assembling your own Schober Electronic Organ.
You need no knowledge of electronics, woodwork or music. Schober's complete kits and crystal-clear instructions show you - whoever you are, whatever your skill (or lack of it) how to turn the hundreds of quality parts into one of the world's most beautiful, most musical organs, worth up to twice the cost of the kit.

Five superb models with kit prices from $\$ 500$ to around $\$ 2,000$, each an authentic musical instrument actually superior to most you see in stores, easy for any musically minded adult to learn to play, yet completely satisfying for the accomplished professional. And there are accessories you can add any time after your organ is finished - lifelike big auditorium reverberation. automatic rhythm, presets, chimes, and more. Join the thousands of Schober Organ builderowners who live in every state of the Union. Often starting without technical or music skills, they have the time of their lives - first assembling, then learning to play the modern King of Instruments through our superlative instructions and playing courses
Get the full story FREE by mailing the coupon TODAY for the big Schober color catalog, with all the fascinating details!

- The $\mathscr{S}_{\text {cholapi Organ Corp., Dept. RE-123 }}$ 43 West 61st Street, New York, N. Y. 10023

Please send me Schober Organ Catalog. Enclosed please find $\$ 1.00$ for 12 -inch L.P. record of Schober Organ music.

NAME
ADDRESS

In any setting of the up-down counter one of IC203's 16 output lines is low while all of the others are high. The low output corresponds to the binary input of IC203. The 15 high outputs turn on their associated transistor switches, placing the collectors of these transistors at approximately ground (actually 0.3 volt), which shunts the tuning voltage to ground. The output that is low turns its respective transistor off and the tuning voltage passes through its isolation resistor and diode to the tuner and the desired channel is selected.

The digital clock

The complete circuit of the digital clock option for the Heathkit GR-2000 is shown in Fig. 9. The majority of the circuit is contained in a single IC, and MOS unit that contains all of the logic circuits required to provide 6 -digit, 12 or 24 -hour time data to the readout circuit of the receiver.

The clock operates from a 24 -volt ac, $60-\mathrm{Hz}$ signal that connects to pin Pl . It is coupled hy resistor R1 to pin 19 of ICI . Diode DI clamps the positive half cycles $10+5$ volts de and diode D2 clamps the negative half cycles to +9 volts dc. Capacitors C1. C2 and C3 are bypasses.

Three momentary switches are used to set the time. Physically they are mounted in the slide out chassis drawer for easy access. Pushbutton H (switch

Everything you wanted to know about CD Ignition Systems but didn't know whom to ask.

Send for FREE Tiger booklet (20 pages) which answers all your questions.

Name

Address.

City

State
Zip

CLIP OUT THIS AD AND SEND TO-

TRI-STAR CORP.

P. O. Box 1727 Dept. H Grand Junction, Colo. 81501

S1) stops the clock to allow actual time to catch up to the display. Pushbutton S (switch S2) advances the minutes and pushbutton F (switch $S 3$) advances the hours.

Either a 12 or 24 -hour display mode can be selected by connecting pin 1.3 to pin 14 for a 12 -hour display, or pin 13 to pin 15 for a 24 -hour display

The voltages that cause the digits to be selected and displayed by the readout circuit appear on wires G, H. and J. Multiplexed time data is fed back 10 the readout board on lines B. C. D

The hand-held remote is completely self-contained and is powered by a 9 -volt hattery. It offers eleven control functions: TV on-off, volume up or down, tint green or red, color up or down. channel up or down, and the readout can be recalled by a touch of the volume-down button. The control frequencies generated by the oscillator in the remote range from 16 kHz to 22 kHz . These frequencies are doubled by the transducer so the actual signals transmitted to the set range from 32 kHz to 44 kHz

Logic circuits control the actual functions in the receiver. The volume control is a good example and the color and tint circuitry is basically the same Take a look at Fig. 10. A 4-bit up-down counter is used to provide 16 possible binary counts. The volume is raised or lowered by varying the current flow in
the volume control line. The counter applies a logic 0 to one end of resistor R31 through R34 in binary sequency to provide 16 discrete levels of volume Inverted IC4-a b, c, and e in series with each output line of the counter (IC3) provide logic inversion.

The volume control also turns the set on and off. The four output lines of IC3 are connected to a series of OR gates whose outputs controls relay driver thansistor Q2. When the counter is set to 0000 , the output at pin 11 of IC6-d is logic 0 and turns Q2 off. Then relay contacis 6 and 9 are open and contacts 1 and 7 are also open and the set is off. When the volume is advanced by increasing the count in IC3. output pin 11 of 1C6-d goes to logic 1. This makes Q2 conduct through the relay coil and turns the set on.

Final comments

We could go on and on. A complete description of all the new circuits in the GR-2000 would fill this issue of Radio-Electronics. However, we have touched on the high points and as it is obvious from the circuits we have described, this TV kit is something to be reckoned with. It provides new circuits that haven't been seen before. It uses the latest in digital logic techniques in its operation. It is undoubtably one of the best designed color TV sets availatble today. It's a set you will want to own.

WRITE TODAY FOR FREE LITERATURE
TUTESOIN
RESEARCH AND MFG. CO. CONSHOHOCKEN, PA., U.S.A.

> SAVE ON THE BEST AND NEWESTIN
> ELECTRONICS

Stereo / - Channel Sys iems - Iape Recorders . Radios - Phonos - Kits . Amateur/Shortwave Gear CB - Antennas - Policel fire Radios - Calculators Timepieces - Security lest Equip. Parts Tubes est Equip. Parts, Yubes free!
Matil
Olson electronics Dept. LQ
260 S. Forge St., Akron, Ohio 44327

> Now that the AT $12 S$ with genuine Shibata stylus is here.. all other stereo cartridges over $\$ 50$ are obsolete! tridge.

Belter performance from existing stereo records, and ideal operation of any CD-4 discrete playback system is yours when you select an audlo-technica four channel car-

Now four models, including the new AT12S at only $\$ 49.95$ suggested retail. All with
genuine Shibata tips that permit response
to $45,000 \mathrm{~Hz}$ and above, while minimizing record wear and offering superb tracking. Write today for free literature and list of audio-technica dealers nearest
you. audio-technica.

new products

More information on new products is available from the manufacturers of items identified by a Reader Service number. Use the Reader Service Card inside the back cover.

FASCINATING HOBBY!

VINTAGE RADIO brings you the pioneer dins of wireless and radio in pictures. The collector's bible, it opens the doors to a new hobby. Great browsing. too. Over 1.000 pictures. 263 pages. $1887-1929$. RADIO COLLECTOR'S GUIDE lists over 50.000 facts on 4.000 radios. $1921-32$: maker, model, year, original price, style. circuit type.

AlOIJ DFLAY: SI ND TOI) IY
Mail check to Vintage Radio. Dep'i R. Rox 2045. Palox Verden Peninsula. CA.. 90274 Vintage Radio. hard cover $\quad \$ 0.95$ Yintage Radio, handhook 4.95 Radio Collectors Guide
4.95
3.95

Postage Paid. California residents add 5% Tax.
Name
Street
City \qquad State__ 2 io

Enjoy The Old Days :

OPEN SESAME. Automatic Speech Recognition System operates on a new concept. A soundoperated switch, the A.S.R. responds only to the specific word or group of words spoken into it. The system consists of an analog-to-digital converter that converts the applied speech

waveforms into a digital format. This information is stored in a memory/logic system for speech pattern identification.
To set up the unit, it is necessary only to speak the desired word or words into the microphone while holding down the ENCODE button. The switch may now be activated at any time by depressing the ACCESS button and repeating the stored word(s). Additional modules permit a number of words to be stored.-Shields Products, Inc., 1104 Prospect Ave., Cleveland, OH 44115.

Circle 31 on remder service card
DIGITAL COLOR GENERATOR, CG25 Little Huey is portable and uses CMOS IC's. Produces all RCA licensed patterns with pushbutton operation. Low power drain; automatic shutoff. Operation from $120^{\circ} \mathrm{F}$ to $-20^{\circ} \mathrm{F}$. Small size leaves

room inside sor: adjustable output to cover low channels 2-6, color level control from $0-200^{\circ}$, adjustable dot size, all easily accessible screwdriver adjustments on bottom of unit $\$ 99.00$-Sencore, Inc., 3200 Sencore Drive, Sioux Falls, S.D. 57107.

Circle 32 on! redader service card

ELECTRONIC AIR PURIFIER KIT, GD-1003 removes up to 99% of all pollens and mold spores and up to 95% of all other airborne contaminants regard less of size or concentration Two-stage cleaning cycle: 8,000 -volt initial ionizing stage, followed by 4,000 -volt collecting stage. Two-speed switch allows movement of

large volumes of air in high position and provides quiet continuous operation in low position.
To clean: just flip off rear grille screen, lift out collector cell and wash in plain detergent and water. Activated charcoal deodorant filters slip out for replacement when needed. $15^{\prime \prime} \times 13-1 / 2^{\prime \prime}$ $\times 17-3 / 4^{\prime \prime}$; self-contained; plugs into any 120 Vac outlet. \$139.95. - Heath Company, Benton Harbor, Mich. 49022

Circle 100 on reader service card
METRIC CONVERTER, model 941 features 35 conversions with the arithmetic functions plus percent for a total of 41 functions. Can be used

as calculator until operator initiates conversion operation. At any point in a problem, a conversion can be made (length, area, volume, liquid, mass, and temperature).

Features include: bright, 8-digit LED display, chain calculations, calculation with memory, full floating decimal, sign indicator, true credit balance, overflow indication, low battery indication, display blanking to conserve power, and more. Kit $\$ 129.95$; assembled $\$ 149.95$; both are handheld-MITS, Inc., 6328 Linn Avenue, N.E., Albuquerque N.M. 87108.

Circle 33 on rededer semvice cord POCKET CALCULATOR, EL-805 operates for more than 100 hours or a single penlight battery. Liquid crystal display and an improved CMOS IC. Display works on rellected light with

almost no battery drain. CMOS reduces power consumption to less than $1 / 20$ th of conventional (P-type) MOS.
In additon to four basic arithmetic functions,

FREE BURGLARFRE ALARM CAIALOG 400 PRODUCTS

Full line of quality systems and supplies for professional or electronic hobbyist. Prompt delivery, quantity prices.
mountain west alarm 4215 n . 16th st. phoenix, az. 85016
this model features 8-digit answers; chain and mixed calculations; minus indicator; zero suppression; automatic clearing; floating decimal and constant. Less than 8 oz . $3-1 / 8^{\prime \prime} \times 4-3 / 4^{\prime \prime} \times$ 13/16"; \$109.95 - Sharp Electronics Corp., 10 Keystone Place, Paramus, N.J. 07652.

Circle 34 on reader service card
ANTENNA ROTOR, model AR-40 has high stall torque, and on-off light that indicates when the system is operating Roof-top portion can be rotated a full 360 . and has an accuracy of 1%. Installation is simple because unit can be as-

sembled on the ground first. Mast-clamp type mounting fits all color antennas.-CornellDubiller Electric, 150 Avenue L, Newark, N.J. 07101.

Circle 35 on reader semvice card
SOLDERING TWEEZER SYSTEM, model CTP-20. For working on small joints in closelyspaced areas and in applications where resis-

LBO-502 - $5^{\prime \prime}$
Solid State
Triggered Scope
3 graded scale readings - 1, 2,5
Push-buttons, lab-grade quality
15 MHz b'width; auto and trig sweep-
$1 \mu \mathrm{~s} / \mathrm{cm}(5 X \mathrm{mag} .0 .2 \mu \mathrm{~s} / \mathrm{cm})$) 10
$0.5 \mathrm{~s} / \mathrm{cm} .17$ steps $10 \mathrm{mV} / \mathrm{p}-\mathrm{p} / \mathrm{cm}$ sensitivity. Rect bezel; adj.lighting scale-tilt adj. \& trig. light. \$529.95

LSG-231 - FM Multiplex
Stereo Generator
Solid state stability \& accuracy. Check balance, separation and alignment on all state-of-the-art audio equip. 50 dB separation. $+2 \%$ at 1 KHz audio signal accuracy; $+2 \%$ at OFF WITH

LFM-36A - Solid State
Wow \& Flutter Meter Offers accurate, simultaneous direct readouts son tape recorders and other units Has separate meters for measuring each function. Accuracy is $\pm 5 \%$ of full scale value Signal frequency is 3 KHz . Compact. rugged, for bench or assembly work $\$ 699.95$
 "Put Us to the Test"

The all-new digital-design

It offers you these important advances in technology, quality, and performance:

Programmable Channel Selection through digital up-down counter with computer-like programming board.

Silent All Electronic Tuning with new combination UHF NHF Varactor Tuner located inside the chassis - completely shielded.

Fixed Filter IF totally eliminates instrument IF alignment forever.

Solid-State Hi-Voltage Supply in tripler configuration for efficiency and long life.

New Deluxe Black (Negative) Ma. trix Picture Tube fully ilfuminated color dots with black background matrix for greater brightness and contrast - new, etched, face plate reduces glare.

True Digital Design Dot Generator makes picture convergence easier and more precise.

100\% Solid-State Design - the picture is the only tube-type de. vice.

Touch Tuning at front panel (or remote) - touch to change channels up or down - hold in to sweep all channels.

On-Screen Clock Readout gives time in 4 or 6 -digit format, 12 or 24 hour time.

19 Integrated Circuits simplify kit building and permit ultra-sophisticated technology with long-term reliability.

Solid-State Low-Voltage Supply has short-circuit proof integrated circuit regulators.

New Vertical Sweep Design gives better picture interlace, improved picture detail; complementary power transistors eliminate output transformers for better linearity.
 Twelve Wiring Harnesses - pre-
fabricated, connectors installed, fabricated, connectors installed,
pre-stripped, ready to solder -pre-stripped, ready ty is easier to build.
this

Three years ago, in response to your requests, we set out to design a truly unique color TV. We have. It uses digital design techniques unusual to TV technology. The result is spectacular.
The 100% solid-state GR-2000 25 V color TV - it silently selects channels with digital-logic accuracy - it displays the channel digits on the screen - it displays the time digits on the screen - it uses a fixed filter IF that never needs alignment - it uses more integrated circuitry than any other set. Yet the kit-building process is now easier than ever.
Silent, All-Electronic Touch-Tuning - no knobs to turn, no noisy turrets, no humming motors and no mechanical contacts to clean. Now you just touch a batton on the front panel or optional remote control transmitter and the new programmable Digital Counter silently sweeps up or dovn through any 16 preselected stations. Release the button and the new UHF/VHF Varactor Tuner is precisely locked-in on the channel of your choice.
You program up to 16 channels into the Touch-Tune System located in the convenient slide-out service drawer. You can program any channels in any sequence, interspersing UHF with VHF, even programming the same channel to appear more than once if you like.
After you have programmed a channel-selection sequence, Automatic Fine Tuning keeps picture and color consistent from station to station. The UHF/VHF Varactor Tuner is positioned inside the chassis, away from the control panel. This helps keep the picture free of spurious signals that find their way into front-mounted tuners.
The channel number is seen on the screen - The Heath-designed On-Screen Electronic Digital Channel Readout has bright white numerals that are easy to see - from across the room, from any viewing angle. Each time you change channels, using the Touch-Tune button either on the set or on the remote control, illuminated digits (adjustable brightness) identify the UHF and VHF stations as you cycle through the channels. After stopping at a desired program, the readout remains on for as long as you want, up to $11 / 2$ minutes, or stays on all the time...the choice is yours. You pre-program the Digital Channel Readout to your requirements with a computer-like programming board located in the service drawer. When the readout is timed to shut off after a few moments, it can always be recalled by changing channels or by tapping the volume "down" button What's more, you can position the readout anywhere you want it on the 25 V screen and adjust its brightness for optimum contrast with the overall picture. The digital readout generator uses a custom designed MOS large scale integrated circuit containing the equivalent of over 2000 transistors, plus diodes, and resistors.
The new Heath Electronic Digital Channel Readout completely eliminates the confusion often found with mechanical tuning devices especially when trying to find an elusive UHF station. And it makes across-the-room remote control tuning easier than ever.
We even changed the way you adjust the sound - With the GR-2000 a touch of either of twa buttons automatically raises or lowers the sound in a series of small steps. Just hold the button down until the sound level is right where you want it. This also controls the volume of the Hi-Fi Sound Output (to your separate amplifier) so you can control it with your remote transmitter.
Build-in an optional Electronic Clock with Digital On-screen Readout - true digital circuitry gives you the time in four-digit, six-digit, 12 -hour or 24 -hour format. A programming board in the slide-out service drawer lets you set your clock to display time the way you want to see it. The on-screen display appears directly below the channel numeral in same-size $11 / 2^{\prime \prime}$ digits. And when you add the clock option, it becomes an integral part of the channel display, responding to the same cantrols. It can be positioned anywhere on the screen with the channel digits, remains on for the same pre-set length of time, or remains on constantly. For setting the time, Hold, Fast and Slow pushbuttons are located in the service drawer. And once set, the electronic clock continues to run even when the set is off, unless the set's Master Switch has been turned off. In norma operation, whenever the set is turned on and the on-screen display is activated, the time is right to the second
A Heath-designed If Filler sets this TV apart from all others - You wanted truly superior color reception, particularly in urban areas where multiple transmitters are located or where multi-channel cable service is available. So we designed a fixed LC-type filter with an IC IF amplifier...a "first" in the television industry, and you can
have it now with the Heathkit GR-2000. This unique circuitry produces an ideally shaped bandpass that greatly reduces adjacentchannel interference. And, this totally new approach to IF design gives the GR-2000 another equally important plus - a consistently excellent color picture, year after year with no need for periodic instrument alignment. The GR-2000 IF system eliminates the highly critical traps that go out of adjustment because of normal component value changes through aging. In short, the Heathkit GR-2000 will maintain its best picture longer than any set with ordinary IF design.
Add Total Touch-Tune Remote Control - it's an all solid-state ultrasonic system that lets you select UHF/VHF channels, control volume, color tint and intensity, on and off. And you do so from as far as 20 feet from the set. The channel selector and volume buttons on the remote also may be used to return the channel and clock readouts to the picture screen whenever you wish.
The easiest-to-build color TV we've ever offered - We said 100% solid-state. And for the GR-2000 that means 19 integrated circuits (33 including the remote and clock), 71 transistors, all of which mount in sockets; 20 glass-epoxy circuit boards; and 12 cables. Imposing? Perhaps, but actual assembly operations for this kit have been greatly simplified. The GR-2000 has fewer point-to-point connections, more ICs, more modular circuit boards, more prefabricated wiring harnesses and cables, and fewer chassis-mounted parts to make it easier to build.
Here's what all those solid-state components do for you to produce truly exceptional color entertainment. To start off, there is DC controlled contrast for less picture interference. An IC color amplifier for truer colors. An IC color oscillator and automatic phase control for more precise and reliable tirts. An IC automatic gain control for improved sensitivity, stability and noise immunity. Improved picture interlace for remarkable image definition and crispness. A new solidstate high voltage rectifier. Short-circuit-proof IC regulators eliminate component damage through accidental shorts. Dual VHF antenna inputs, 300 ohm balun for your twin-lead antenna, true $75-0 \mathrm{hm}$ for proper cable TV and coax hook-up. Exclusive Heath MagnaShield Chassis to keep stray magnetic fields from interfering with picture quality.
New, latest-design picture tube - a deluxe Black (Negative) Matrix 25 V picture tube now with fully illuminated dots with black 'surround" and new, etched, face plate...it all adds up to brighter, more vivid pictures with reduced glare and reflections and greater contrast.
New exclusive Heath self-service features - no other manufacturer offers them to you at any price. Built-in service facilities such as a new digital-design true dot generator, purity and convergence adjustments; test meter; new vertical and horizontal centering circuits; new Top-Bottom-Sides pincushioning corrections; new "Service" circuit board puts everything in an easy-to-find place.
We set out to design the most advanced and unique color TV available today... we believe the performance of the set will speak for itself. The new digital-design Heathkit GR-2000 ...it will change your mind about color TV.
Kit GR-2000, 147 lbs.
649.95*

Four New Cabinet Designs From $\$ 139.95^{*}$ See Catalog
Send for FREE Heathkit catalog.

tance heating could damage circuit components. Operator grasps the lead (tweezer-like) and then performs the heating function with no danger of arcing or stray current generation.
Weighs less than 5 oz .; controlled heat allows temperature stabilizion of the leads during heating and cooldown; adjustable-temperature power supply. Foot switch on-off control. Adjustable tip gap opening to $3 / 4^{\prime \prime}$; replaceable tips; $\$ 149.00$ - Pace, Inc., 9329 Fraser Avenue, Silver Spring, Md. 20910.

Circle 36 on reader service card STEREO PREAMPLIFIER, model 4000 features the "auto correlator," a noise reduction system that makes record/tape hiss and FM broadcast noise virtually vanish without affecting muscial content.
Total distortion: less than 25°; typically $.02 \%$ Frequency response: phono-within $\pm 1 \mathrm{~dB}$ of RIAA from 20 Hz to 20 kHz ; high level-within ± 1 dB from 20 Hz to 20 kHz . Power consumption: 40

watts. $7^{\prime \prime} \times 19^{\prime \prime} \times 10^{\prime \prime} ; 18 \mathrm{lbs}$.; $\$ 599.00$-Phase Linear Corp., 405 Howell Way, Edmonds, Wash 98020

Circle 37 on reader service card
VOM, model 120 f features 20,000 ohms-per-volt sensitivity and 2% accuracy on dc; offers a $.25-\mathrm{Vdc}$ range and a $50-\mu \mathrm{A}$ direct current range Resettable electronic overload protection cir

The World's Largest Consumer Electronics Catalog

The world's Foremost consumer electronics catalog is yours for the asking! Over 25,000 items . . . jampacked with illustrations and descriptions of the very latest in $\mathrm{Hi}-\mathrm{Fi} . \mathrm{CB}$ Tape recorders, Radios, Television, Electronic Parts. Technical Publications.

Everything in Electronics For Home, Business, Industry PLUS The Latest in 4-Channel Stereo!

LAFAYETTE 1974 CATALOG 740

Our 53rd Year

MAIL THE COUPON TODAY

Stores From Coast-to-Coast

LAFAYETTE RADIO ELECTRONICS

P.O. Box 10, Dept. 17103

Syosset, L.I., N.Y. 11791
Send For Your Free Lafayette Catalog Today!

cuit protects the instrument.
Ranges covered: direct volts-0 to 1000 in 8 ranges; direct current-0 to 10 A in 6 ranges: alternating volts-0 to 1000 with 3% accuracy and frequency response of $\pm 1 \mathrm{~dB}$ to 100 kHz through $50 \mathrm{~V} \pm$ to 20 kHz on 250 V range; ac output volts- 0 to 250 in 4 ranges; ohms- $R \times I, R \times 100$. $\mathrm{R} \times 10,000$; also reads decibels. $5-1 / 4^{\prime \prime} \times 7^{\prime \prime} \times$ 3-1/8'; 3 lbs.; $\$ 69.95$ (test leads and batteries included).-Dynascan Corp., 1801 West Belle Plaine Avenue, Chicago, III. 60613.

Circle 38 on reader service card
MICRO-COMPUTER, model Root-8 features automatic square root key; can be used for squaring and reciprocal calculations. Features include: sign change (+ to -, - to +), automatic

PAIA
 MAKES THE ONLY
 * SYNTHESIZER
 MODELS PRICED FROM \$139

floating decimal, underflow system that delivers the eight most significan digits of the answer, calculation with a constant in multiplication and division, automatic overflow check that locks calculator until cleared, automatic zero suppression, and true credit balance capabilities. Operates on ac or batteries; $1-1 / 2^{\prime \prime} \times 7^{\prime \prime} \times 3-3 / 9^{\prime \prime} ; 14$ oz. including batteries; \$89.95.-Casio, Inc. One World Trade Center, New York, N.Y. 10048. Circle 39 on reader service card
DUAL TRACE OSCILLOSCOPE, D75. 6-1/2" CRT contains internal graticule for nonparallax measurement. 15-kV accelerating potential helps produce bright displays of low repetition rate signals in even high ambient light environment.

For low-amplitude measurements, the $50-\mathrm{MHz}$ dual-channel, vertical amplifiers have deflection factors starting at $5 \mathrm{mV} / \mathrm{div}$, accurate within 3%. For measuring even lower amplitude signals, a gain contrel (X5) extends the

minimum deflection factor to $1 \mathrm{mV} / \mathrm{div}$ with $15-\mathrm{MHz}$ bandpass. For high resolution meas-

Circle 62 on reader sembice cords

And here's more good news! To help you keep the most-fre-quently-used transistors handy in your shop, we've got a new KS-10 Transistor Assortment. The Keen 18 . . . 10 small-signal transistors and 8 power transistors . . . give you a working inventory that replaces thousands of the most popular domestic and foreign O.E.M. part numbers. They come in an attractive, blue, durable plastic cabinet . . . you pay for transistors only . . . cabinet is yours at no additional cost!

See the KS-10 with a special introductory price at your distributor's. While you're there, pick up a free copy of the 48 -page Sprague K-500 Semiconductor Replacement Manual. Or . . . write to Sprague Products Co., 81 Marshall St., North Adams, Mass. 01247.

NEVI KS-10TRANSISTOR ASSORTMENT . . REGULARLY \$34.11

urements, the $50-\mathrm{MHz}$ bandwidth displays pulses with risetime of 7 ns or less. Five vertical modes are available, including alternate, chopped and summed. $5.4^{\prime \prime} \times 15^{\prime \prime} \times 18.6^{\prime \prime}$; 25.5 Jbs. \$1,375.00. - Tektronix, Inc., P.O. Box 500, Beaverton. Ore. 97005

Circle 40 on reader service card MICROPHONE TRANSFORMER, 502CP matches a Lo- Z mike line to $\mathrm{Hi}-\mathrm{Z}$ input; matches low-impedance microphones to highimpedance inputs. Has flat 20 Hz to 15 kHz re-
sponse; plug-in connectors; $3 / 4^{\prime \prime}$ diameter.
Has A3F professional three-pin connector on the Lo-Z infut side and standard phone plug on the Hi-Z output side plus loose Switchcraft A3M connector for output end of microphone cable. \$14.40. - Electro-Voice, Inc., 600 Cecil Street, Buchanan, Mich. 49107.

```
Circle Al on reader service card
```


MARCH IS HI-FI MONTH

And $F_{i}-E$ has some really special articles ready for you. Among them is a detailed look at the development of the SQ system from the basic matrix decoder, through the latest wave-matching fulllogic decoder and on to a look at what is still to come.

70% OFF LISTI $\begin{array}{llll}1 \text { AD2 } & 1.28 & \text { GAV6 } & .89\end{array}$ 1 B3 1.30 GAW8 $1 \mathrm{K3}$
1 S 2 A

70% OFF

ALL TUBES BRAND NEW MANU. BOXED 70\% OFF			
6GM6	1.28	6JS6	2.42
6GU7	1.36	6JT8	1.47
6GW8	1.35	$6.5 \cup 8$	1.46
6GX6	1.10	6JW8	1.02
6HA5	1.26	6KA8	1.61
6HB7	1.41	6KD6	2.93
6HE5	1.80	6KE8	2.00
6HF8	1.95	6KG6	2.88
6 HOS	1.67	6KN6	2.38
6HS5	3.00	6KT8	1.77
6HS8	1.56	6KZ8	1.33
6HV5	3.08	6L6GC	1.93
6HZ6	1.04	6LB6	2.79
6 J 10	2.00	6LE8	1.83
6JC6	1.47	6LF6	2.78
6JD6	1.52	6LF8	1.68
6JE6	2.85	6LJ8	1.44
$6 \mathrm{JH6}$	1.17	6LM8	1.61
$6 \mathrm{JH8}$	1.77	6LN8	. 80
6JM6	2.55	6LR6	2.66
6JN6	1.76	6LU8	1.58

free value packed

 CATALOG MINIMUM ORDER $\$ 7.50$MONEY BACK GUARANTEE Terms: Minimum order $\$ 7.50$. Include postage. Either full pay. ment with order or 20% deposit balance C.O.D.

70\% OFF LIST!

$$
\begin{array}{llll|}
\text { 6LY8 } & \mathbf{1 . 2 8} & 12 \text { FQ7 } & \mathbf{1 . 1 1} \\
\text { 6MD8 } & \mathbf{1 . 7 3} & \text { 12GE5 } & 1.71 \\
\text { 6ME8 } & \mathbf{4 . 3 0} & 12 G N 7 & 1.82
\end{array}
$$

All booklets, catalogs, charts, data sheets and other literature listed here with a Reader Service number are free. Use the Reader Service Card inside the back cover.

TOOLS FOR ELECTRONIC ASSEMBLY AND PRECISION MECHANICS. 96-page handbook describes over 1,900 items. Includes files, screwdrivers, wrenches, pliers, power tools, tool kits, relay tools, solders, microtools, test equipment, metalworking tools, wire strippers, etc. Four pages of technical data on tool selection include screwdriver selection, machine screw data, tool materials, temperature conversion. drill sizes and more. Contains glossary of terms of specific sections at beginning of that section.-Jensen Tools and Alloys, 4117 North 44th Street, Phoenix, Ariz. 85018.

Circle 42 on reader service card
1974 ELECTRONICS CATALOG, NO. 238. 180-page booklet contains stereo and fourchannel receivers, electronic calculators, automatic tape cartridge changer and DuoFone (telephone answering system for under \$80). Includes complete line of Realistic home entertainment products, audio equipment. CB twoway radios and walkie-talkies and intercoms, Micronta test instruments, Archerkit and Science Fair automotive, electronic and hobby kits. Also includes tubes, transistors, cables, connectors and adapters; many illustrations and prices-Radio Shack, Dept. R-24, 2617 West Seventh Street, Fort Worth, Tex. 76107.

Circle 43 on reader service iard
NRI HOME TRAINING IN AIR CONDITIONING, REFRIGERATION AND HEATING. Outline of 45 lesson course covering servicing electric motors, refrigerant connections and servicing automotive heaters and air conditioners. Training units include circuit demonstrator (for learning fundamentals of electrical circuits) and control simulator (for learning electric controls). Each student receives a 5.000 BTU York window air conditioner to use as a practice unit and later for his personal use.-NRI Training, 3939 Wisconsin Avenue, N.W. Washington, D.C. 20016.

Circle 44 on realer service card SOLDERING TOOLS CATALOG No. 523 features all purpose soldering kits from Standard, Princess. and Imperial lines. Illustrations and applications of the kits' adaptability are shown. Included is heater and kit selection guide as well as instructions for tip use and maintenance. Also featured are production aids, de-soldering equipment, and heat gun.-Ungar, 233 East Manville, Compton, Calif. 90220

Circle 45 un reader service curl SIMPLIFIED SCIENCE ACTIVITIES is a 32 -page catalog that contains step-by-step units on weather, ecology, plants and growing, nature, optical illusions, color, astronomy, microscopes, metric, and physical education. Many kits with illustrations and lessons. Also included are various materials, useful teaching aides-Edmund Scientific Co., 486 Edscorp Bidg., Barrington, N.J. 08007.

Circle 46 on reader service card

next month

MARCH 1974
 SPECIAL ISSUE HIGH-FIDELITY SOUND

- The SQ Generation

Contributing High-Fidelity Editor Len Feldman explores the development of the SQ matrix system from its earliest beginnings (3-dB front-to-back separation) to its current status with wave-matching and full logic.

- Improving Room Acoustics

There are ways to make your hi-fi system sound better by improving the acoustics of your listening room. This article tells how to do it.

Flat Speaker Systems

There are two new speaker systems that produce a relatively flat speaker enclosure. One is from Magitran, the other from Fisher. Here's the inside story on how they work.

Installing Car Tape Decks

A complete guide to installing an add-on tape deck and speakers in a modern automobile. It's easy and can be profitable.

PLUS:

Technical Topics
Step-By-Step Troubleshooting Charts
Transistor Replacement Guide
Appliance Clinic Service Clinic

Here's how our Digital Circuit Design course helped Mr. Wright: your course helped me immeasurably. I recently applied for a new position and got it. Your special training is now helping me fulfill my responsibilities on the job."

Learn advanced CIRCUIT THEORY

in your spare time; without higher math!
THE CENTER understands and anticipates your needs for working in electronics today. Our courses get results for you quickly, with convenient home study. All courses are 100% tax deductible. You take no risks. You receive everything on a 5 day FREE TRIAL basis. Decide your future, act today!

SEND FOR FREE INFORMATION TODAY!

Send me complete information on the following
\square Digital Circuit Design \square IC Logic Design \square Power Supply Design \square MOS/FET \& J/FET Circuit Design \square UJT Circuil Design

Street

IMPROVED ASCII ENCODER
 (continued from page 61)

sensing is translated down to ground by IC3 and acted on by IC2 to get the proper three bit code. For instance, with no current through Q1 or Q2, the output code $101-\mathrm{XXXX}$ is sent, corresponding to a character P through Z. Current through either other transistor sets up the numbers or lower alphabet code. And this gives us our basic 48 key encoding scheme.

Now, we add some refinements. The shift key acts on IC2 to change from punctuation to numbers or backwards. If a code from 0000 through 1011 is sent, this is recognized by IC 5 as a number, a colon, or a semicolon. IC5 then tells IC4 to leave the shift command the way it was, and a unshifted key gets you a number, and a shifted key gets you the equivalent punctuation. On the other hand, if codes 1100 through 1111 are sent. IC5 detects this, and through the exclusive-or gate in IC4, compliments the shift line. Now, the shift key works backwards, putting the four problem punctuation keys back the way they belong. This is admittedly a bootstraps operation, but the time for the output to tell the input to shift is only a few nanoseconds, an utterly negligible time compared to most contact condiing and compliment-the-shift-if-12-orgreater circuit only affects the number keys. Any alphabet or punctuation key in columns IV or V are not affected by this circuit since Q2 is not sensing a "numbers" key.

Finally, the control key forces outputs 6
and 7 to ground regardless of anything else, automatically shifting from a alphanumeric command to a machine command. The spacebar is diode encoded to simultaneously provide a shift and a 0 , or a "capital \varnothing^{\prime} ", while the carriage return key uses two diodes to simultaneously give you a "control" and a "M" command. Other special keys are easily added, often by using two more diodes per key. If you need a DEL or delete key, the simplest way to do this is to break output line 6 with a SPDT key and route it to +5 . The normal output of the encoder is 101-1lll when no key is in use. This changes it to 111-1111 or DEL. If you must have the lower case alphabet (make sure the other end of the system can handle or recognize it), you can leave the DEL key down to generate it.

Building it

A PC board is shown along with a parts list and notes on kit availability. We cannot tell you, now, what keyboards are available. Check the ads in the back of this issue for a guide. Before construction, you have to decide whether you are going to use mechanical contacts or resistive ones and place the program jumper accordingly, +5 for mechanical contacts or +12 for elastomeric ones. A 12 -volt battery may also be used, as no input current is drawn unless a key is pressed, or you can tack a 6 -volt battery on top of the +5 -volt line for 11 volts. Resistors R1 and R2 also have to be changed, 1 K for the +5 -volt supply, or 3.3 K for the +12 -volt supply. If the encoder is to be used on a keypunch style keyboard, it easily mounts on one end of the unit by using four spacer blocks. A slight amount of filing may be
(continued on page 94)

- Tests Predetermined Frequencies 25 to 1000 MHz
- Extended Range Covers 950 MHz Band
- Pin Diode Attenuator for Full Range Coverage as Signal Generator
The $\mathbf{F M}-2400 \mathrm{CH}$ provides an accurate frequency standard for testing and adjustment of mobile transmitters and receivers at predetermined frequencies.
The FM-2400CH with its extended range covers 25 to 1000 MHz . The frequencies can be those of the radio frequency channels of operation and/or the intermediate frequencies of the receiver between 5 MHz and 40 MHz .
Frequency Stability: $\pm .0005 \%$ from $+50^{\circ}$ to $+104^{\circ} \mathrm{F}$.
Frequency stability with built-in thermometer and temperature corrected charts: $\pm .00025 \%$ from $+25^{\circ}$ to $+125^{\circ}$ (.000125\% special 450 MHz crystals available).
Self-contained in small portable case. Complete solid state circuitry. Rechargeable batteries.

WRITE FOR CATALOG!
FM-2400CH
(meter only) $\quad \$ \mathbf{5 9 5 . 0 0}$
RF crystals (with temperature correction) RF crystals (less temper- 24.00 ea ature correction) $\quad 18.00$ ea IF crystals..................atalog price
 10 No. LEE OKLA CITY OKLA 73102

new books

MATV Systems Handbook-Design, Installation \& Maintenance by Allen Pawlowski. Tab Books, Monterey \& Pinola Sts., Blue Ridge Summit, Pa. 17214. 176 pp. $81 / 2^{\prime \prime} \times 51 / 2^{\prime \prime}$. Hardcover $\$ 7.95$, Softcover $\$ 4.95$.

A top-to-bottom look at MATV systems - from antenna basics down to TV filters and attenuators. The author presents a bedrock background for readers unfamiliar with technical terminology. He covers the various types of antennas for vhf and uhf, down-conversions, mixers, filters and traps, isolation and insertion loss, impedance matching and selectivity. The basics of master antennas, coax cables, splitters and couplers, taps and other terminating devices and matching transformers are covered in the early portion of the book. Then the reader is introduced to the ins and outs of designing complete systems. Must reading for the technician getting involved in MATV.

Selecting \& Improving Your Hi-Fi System by Harvey F. Swearer. Tab Books, Monterey \& Pinola Sts., Blue Ridge Summit, Pa. 17214. 224 pp. $81 / 2^{\prime \prime} \times 51 / 2^{\prime \prime} . \$ 7.95$.

Never before has the hi-fi buff had such a wide range of selection as he is currently offered. In this book the author explains what features each unit in the hi-fi system should provide and what the buyer should look for. He does not tell you the best system for you to buy simply because the best system for you is the one that fills your specific needs. Among the chapters in this book are: program sources, AM/FM receivers and amplifiers, 4 -channel sound, stereo record players, tape recorders, connectors and cables, hi-fi speaker systems, speaker enclosures, and overall system checks

Regulated Power Supplies by Irving M. Gottleib. Howard W. Sams \& Co., Inc., 4300 W. 62 St., Indianapolis, Ind. 46268. 160 pp. 81/4" $\times 51 / 4^{\prime \prime}$. Softcover $\$ 4.95$ ($\$ 5.95$ in Canada).

The regulated power supply has become a vital part of modern electronic devices. This kind of supply enables circuits powered by it to provide low distortion and stable operation under varying loads. The book starts off by showing the advantages of using regulated supplies, then goes on into the characteristics of their operation and continues into methods of using them. A final chapter discusses integrated circuits and monolithic modules used in today's regulated power supplies.

Introduction to Medical Electronics - For Electronics \& Medical Personnel by Burton R. Klein. Tab Books, Monterey \& Pinola Sts., Blue Ridge Summit, Pa. 17214.271 pp. $81 / 4^{\prime \prime} \times 51 / 4$ ". Hardcover $\$ 9.95$, Softcover $\$ 6.95$.

This one book ties together medicine and electronics in a mannner that can be understood and easily digested by members of both professions. For non-medical personnel, a body is described in depth as an anatomical and physiological system. There is a continuing tie-in of physiological activities of the body with the equipment that is designed to detect, amplify and present data signals concerning the body. On the electronic end, the various categories of electromedical equipment are described as is maintenance, fault sensing, equipment management, and follow-up for preventive maintenance. A valuable text and reference in the field of medical electronics

Transistor Specifications Manual, 6th Edition by the Howard W. Sams Engineering Staff. Howard W. Sams \& Co., Inc., 4300 W. 62 St., Indianapolis, ind. 46268. $160 \mathrm{pp} .103 / 4^{\prime \prime} \times 81 / 4^{\prime \prime}$. Softcover $\$ 4.50(\$ 5.40 \mathrm{in}$ Canada).

In the time since the first transistors were made available, the total number of types has increased tremendously. Many of these transistors are no longer on the market, many were produced with no type numbers, and others by manufacturers no longer producing transistors. When these types are encountered in older equipment, it is usually difficult, if not impossible, to locate transistor specifications. This manual contains three principal sections designed to provide maximum information about the transistor - a specification section, a LED identification section and an outline section. This newest, expanded version contains all the information you need to locate a proper replacement for more than 12,000 different transistor types.

1-2-3-4 Servicing Automobile Stereo, 2nd Edition by Forest H. Belt. Howard W. Sams \& Co., Inc., 4300 W. 62 St., Indianapolis, Ind. 46268.240 pp. $81 / 4^{\prime \prime} \times 51 / 4^{\prime \prime}$. Softcover $\$ 4.95$ ($\$ 5.95$ in Canada).

This text outlines an effective troubleshooting system that results in a reduced call back rate since the system is so complete that it catches even borderline faults that are often overlooked. Follow the procedures diligently and as the author states: "You can't fall into the common fix-only-what's-obvious trap." Sets that you repair stay repaired. This is the second edition of this book and has been brought completely up-to π_{-} date with many new illustrations and updated additional text information.

GRANTHAM OFFERS YOU College-Level Training

and a college degree.

Electronic Circuit Design, Engineering Analysis (including mathematics thru calculus), Classical and Solid-State Physics, Engineering Design, etc., etc., are all part of the Grantham home-study degree program in Electronics Engineering.

(Regardless of what you may have read in another school's ad. Grantham does teach college-tevel circuit design by home study.)

By adding collegelevel home training and a college degree to your experience. you can move up to greater opportunities in electronics.

Grantham offers the A.S.E.T. degree by correspondence. After earning this degree, you may continue with additional
 correspondence plus a one-week residential seminar and certain transfer credits, to earn the B.S.E.T. degree. Then, the B.S.E.E. is available through further residential attendance.

GRANTHAM SCHOOL OF ENGINEERING

2000 Stoner Ave., Los Angeles CA 90025

Telephone (213) 477-1901

Established in 1951 - G.I. Bill approved. Mail the coupon below for free bulletin.

Grantham School of Engineering
2000 Stoner Ave., Los Angeles, CA 90025
I have been in electronics for \quad years. Please
mail me your free bulletin which gives details con-
cerning your electronics degree programs.
Name Age-
Address
City

KEYBOARD ENCODER
(continued from page 92)
necessary on these blocks, depending on your soldering on the circuit board to get things to lie flat. The bypass capacitor should be mounted component side, but with slightly long leads and bent flat. Otherwise interference between CI and the metal case or rails holding the keyboard in your system may result.

There are 23 input leads. These are directly wired to the keys following the wiring matrix of figure one. (If you're using the Radio-Electronics Low-Cost Keyboard, rewire the jumper matrix to suit.) If you have to run through a connector or otherwise want to minimize the interconnect leads, the diodes D1 through D4 can be placed on the keyboard end, reducing you to 21 connections. Normally you mount the encoder integrally with your keyboard and this doesn't matter.
Note that whatever keyboard you use. the keytops must be ASC 11 ones. This means that the "capital 2" has to be a \#, the capital colon a * the capital semicolon a dash or minus, and so on. Otherwise, you have to remark the keyboards.

Using a keypunch keyboard

These are easily recognized by their bright blue keys and are now available from several surplas sources. More can possibly be expected since keypunch equipment is mose or less headed to obsolescence. An unmodified one of these has the keys and keypairings all wrong. since they originally

TEST RIGFOR TUBE \& 5OLID STATE

were EBCDIC coded, a non-standard and older code. Forrunately the callouts go where you can't reach them with a finger. and attractive stick-ons are easy to do, (see parts lists) as are instant transfer letters, or white ink fro the stationery store.
Various solvents (lacquer thinner, etc.) easily remove the old ink, or it may be carefully scraped off with an Xacto knife or a razor blade. Don't soak the keys in solvent as it may attack the plastic. Keyboards available from some sources are completely rebuill for ASCII use. If you are doing your own instead, rearrange the parts so you have a rectangular block of keys with the black keys on top and the blue ones in the middle. Again, if you are rebuilding your own, you probably will end up short by at least two or three blue keys. These may be repainted as needed. ASCII modified keyboards come with everything the right color. Extra mounting blocks on one end support the encoder. The encoder may be mounted above or below the rails, although the lower position is much easier to wire Output may be directly soldered, or connected with a standard 12 -pin PC edge connector

One way to simplify the wiring with this type of keyboard is to use solderable magnet wire-stuff that you can solder right through the insulation. Beldsol and Soldereeze are two types. This way, you loop the wire from terminal to terminal and then solder it in place without stripping. Stripping or at least pretinning is still recommended at the PC board end. It takes extra heat to solder through the insulation, but don't use so big an iron or gun that you melt the key assemblies or hurt the PC board. Heat the joint

4 Mongy-seving reasons to buy hrobs solit State Test Equipment.

EICO 242 FET-TVOM. Peak-to-peak EICO 379 Sine/Square Wave Generameasurements of $A C$ volts and milli- tor. Simultaneous sine and square wave amps. $6 \frac{1 / 2 "}{}$ meter. 7 non-skip ranges, outputs. Covers 20 Hz to MHz in five High input impedance. Low 1 volt ranges. Low distortion sultzer feedscale. DC/AC Multi-Probe. AC or bat- back circuit. Square wave rise time tery operated. Kit $\$ 79.95$, Wired better than 0.1 microseconds. Kit $\$ 109.95$. $\$ 74.95$, Wired $\$ 109.95$.

EICO 330 RF Signal Generator. 5 bands EICO TR-410 Triggered Sweep Scope. cover a range from 100 kHz to $54 \mathrm{MHz} . \quad 100 \%$ solid state. DC to 10 MHz bandCalibrated modulation adjustment con- width. Sweep synchronized gate outtrol. 400 Hz audio output. Provision put. Z-Axis input. Use as vectorscope for modulating RF with internal or for color TV servicing. One probe for external signal source. Kit $\$ 64.95$, direct and $10: 1$ measurements. Wired Wired \$99.95. $\$ 429.95$.

FREE 32 PAGE EICD CATALDG

For latest catalog on Eico Solid State Test Equipment, Automotive and Hobby Electronics, Burglar-Fire Alarm Systems, Stereo, and name of nearest EICO Distributor, check reader service card or send $25 ¢$ for fast first class mail service.
EICO, 283 Malta Street, Brooklyn, N.Y. 11207
सान०

Assemble this digital clock and calendar in just one evening...get continuous readout of hour, minute and second, plus month and day.
 This new Digital Concepts electronic digital clock and calendar indicates the hours, minutes and seconds or the month and the day ... or alternates between time and date at 10 second intervals Glowing orange digital readout (a continuous character . 55 inch high) is visible from almost any viewing angle, no matter how light or dark the room.
 Operation is totally silent, with accuracy to within seconds a month: life expectancy is an incredible 100,000 hours

CHOICE OF DISPLAY MODES
You can decide to display time only, date only, or a continuous 10 -second cycle in which time alternates with date You can operate on a 12 -hour or 24 -hour international time sequence And you can change all display modes instantly -any time you wish - by flicking simple controls
BEAUTIFUL, AND BEAUTIFULLY EASY TO ASSEMBLE
The contemporary hand rubbed oiled walnut cabinet is ideal for home, office or place of business. And a very nemorable gift. All com ponents of the kit mount on two interlocking printed circuit boards, for easy assembly in one evening, using only a soldering iron and a pair of dagonal cutters the only wire in the kit is the line cord. Accuracy is assured by one MOS/LSI integrated circuit "chip" and top quality electronic components throughout The Digital clock and calendar is also available factory assembled.

ORDER NOW FOR IMMEDIATE DELIVERY
Send this coupon with your check or money order for tast delivery anywhere in the world
Money back guarantee if not fully satisfied.

digital rancepts

249 Route 46, Saddle Brook, New Jersey 07662
Enclosed please find my check or money order to

```
s or charge my Masterchatge accoun
```

number___ expiration date
10 cover the following orde:
——_kit(s) of electronics oniy. Model CK-100
$\$ 68.00$ each
cabinet(s). with face and mounting hardware
Model C-31 (a) $\$ 18.00$ each
factory assembled calendar clock(s) Model
EC-102 $\$ 108.00$ each
Add $\$ 300$ to cover costs of postage and handling
Name
Address

City

Save money

ZENITH

221-45 Color IC
2 for $\$ 4.95$
212-109 Voltage Trip.
212-136 Voltage Trip.
212-72-Cov. Bd. Diode
PHONO EQUIP.
SONOTONE-8-T
BSR-TC8S
VARCO CN-72
2 for $\$ 3.95$
2 for $\$ 3.95$
SPEAKERS
$31 / /^{\prime \prime}$ Sq.
$4^{\prime \prime}$ Sq.
${ }^{2 \times 6} 6^{\prime \prime}$
$5 \times 7^{\prime \prime}$
$5 \times 7{ }^{\prime \prime}$
6" Round
8" Round
CONDENSERS (LIMITED)
001 Mfd.-1 KV
0039 Mfd .1 KV
.0068 Mfd .1 .2 KV
056 Mfd .600 Volts
047 Mid. 1 KV
.01 Mid. 400 Volts
100 Asst'd Mica Cond
150 Mfd. $150 \mathrm{~V}-50 \mathrm{Mfd} .-50 \mathrm{~V}$
$100 \mathrm{Mfd} .-150 \mathrm{Volts}$

DIODES-SEMI-CONDUCTORS

25-2.5 Amp.-100 PIV (I.R.)
6500 PIV Focus Rectifiers
13.5 KV Focus Rect

Color Boost Rect.
1 N34A diodes
3.59 Mhz. Color Crystals (SPEC.)

CONTROLS-RESISTORS
20 Asst'D MALLORY CONTROLS
20 Asst'd. W.W. Sizes \& Watt.
53 Meg . IRC HV Res.
66 Meg. IRC HV Res. (SPEC)
$\$ 4.95$
. $\$ 4.95$
2 for $\$ 1.00$

2 for $\$ 3.95$
$\$.69$
$\$.69$
$\$.79$
\$. 99 $\$ 1.29$ $\$ 1.99$ $\$ 2.59$ $\$ 1.79$
$\$ 2.59$

20 for $\$ 1.00$ 20 for $\$ 1.00$ 20 for $\$ 1.00$ 20 for \$1.00 20 for $\$ 1.00$ 25 for $\$ 1.00$
$\$ 1.19$
3 for $\$ 1.00$
6 for \$1.19
$\$ 4.95$
4 for $\$ 2.00$ 4 for $\$ 2.00$ 5 for $\$ 3.00$
5 for $\$ 2.00$ 5 for $\$ 2.00$
25 for $\$ 2.00$.3 for $\$ 1.98$
$\$ 2.00$
20 for $\$ 1.39$ 4 for $\$ 2.00$ 4 for $\$ 2.00$

5-40 KV HV Anode Leads
10-B/W Anode Leads
10 AC Interlocks-Polarized
Color CRT Boost. 90%
Color CRT Boost. 70\%
Color CRT Boost. 70\%
70% Conv. Assembly
25 Asst'd Term. Strips
CRT Harness Color $23^{\prime \prime}$ \& $25^{\prime \prime}$ Sets DELAY LINES
50 Assorted Fuses (Boxed) COAX "F" Connectors
Blue Lat. Mag./Purity Rings
10 Asst'd Align. Tools
AC-Cube Taps-3 Outlets
Hi-Gain 2 Set Coupler
Hi -Gain 4 Set Coupler

KEYBOARD ENCODER

(continued from page 95)
first. After the insulation smokes, add a minimum amount of solder.

Testing the encoder

The obvious test is an acid test-connect it to the TV Typewriter or a terminal and see if it sends the right letters. A way that ties up less fancy equipment is to use a batch of IC driveable test lamps or LED's to simultaneously monitor all the outputs.

If some stickiness or reluctance is experienced with the spacebar and carriage return keys, raise the supply voltage slightly or replace D1 and D2 (the diodes that go to IC1) with metal barrier low-threshold diodes such as a MBD101 or something else with a 0.3 volt forward drop or less at $6-\mathrm{mA}$ current. Of several IC l's tested, operation was satisfactory down to 4.7 volts. Maximum permissible voltage applied to the +5 terminal is 6.8 volts. A tightly regulated 5.1 or 5.2 -volt supply should work with practically all units

As with any keyboard system, some form of debouncing and noise elimination is essential. Normally, as in the TV typewriter, this is provided internally. If not, one possible circuit is shown in Fig. 2 that handles most any keyboard. An optional parity generator and parallel to serial converter were shown in the original article. These may be used as add-ons, or newer MOS asynchronous receiver-transmitter integrated circuits can be used for the same task. If enough readers need this sort of thing, we "ll work up a project on it.

R-E

APPLIANCE CLINIC

(continued from page 26)
pected switch, etc. and apply power. If the unit starts to heat, run, etc. . turn it off. and replace that thermostat or switch

In the plastic-cased thermostats, switches, etc.. check the terminals. They should be clean, and tight in the body of the unit. In quite a few cases, the switch contacts can overheat, cause the body of the switch to char, and make the terminal come loose! This is a dandy cause of intermittent operation of the appliance. It will work perfectly one time, then refuse to go at all the next. Wiggle wiring, and check terminals, etc. Something is loose, not making good tight contact.

Careful attention to small details can help you find and fix some otherwise puzzling problems. Check everything! R-E
MAGNAVOX 361340 -Equiv, $Y-133$
DY-95AC-Y-109
Silvertone 80-56-4G
Motorola-(Qusar)-24D68592B01
$\$ 4.95$
$\$ 5.95$

MINIMUM ORDER $\$ 15.00$
SEND FOR FREE CATALOG TUBES UP TO 80\% OFF

SEND CHECK OR MONEY ORDER

TV TECH SPECIALS

P.O. Box 603

Kings Park, L.I., N.Y. 11754

TOOL KITS

FIELD ENGINEER TOOL KIT JTK-17

FIELD ENGINEER ATTACHE' CASES

Circle 75 on reader service card

NOW IS THE TIME TO ECONOMIZE

FREE $\$ 1$ BUY WITH EVERY 10 YOU ORDER ${ }_{\text {to }}^{\text {Ony }}$, ${ }^{\text {applios }}$ Buvs FREE GIFT WITH EVERY ORDER
CANADIANS: Ordering is easy - we do the paperwork - try a small order

WESTINGHOUSE ALL TRANSISTOR HOME/OFFICE MESSAGE CENTER

Leaves messages for other for replay . . . B speaker/microphone for talk-into convenience. cords up to 3 minutes of messages . . Illum

MARKET SCOOP COLUMN

 BlUE LATEAAL MAGEI ASSY, Re : 1.59

versal type-god for maxt setg
COOR-N RECTIFER - Used in color sets- 6500 kv 3 for 2 COION-W CRT SOCKETS Wived leads, :1 for RCA 110° CRT SOCKETS Wired leads, \&
${ }^{90}{ }^{\circ}{ }^{\circ} \mathrm{COOLO}$ TUBE

COL ORBURST QUARTZ-CRYSTAL

"Third-hand"" tester prods rir preans into out of way places - Insulated - cannot slip accommodates bar
plug-no soldering.

$$
\begin{aligned}
& 70^{\circ} \mathrm{NV} \text { OEFLECTIO } \\
& \text {, achemstic. }
\end{aligned}
$$

 ${ }^{\text {Nation }} \mathbf{T V}$

 - CCA COLOR YOKE
 $\square \begin{aligned} & \text { Coll } \\ & \text { all round color CRT's. } \\ & \text { YOKE } \\ & \text { For }\end{aligned} \mathbf{\$ 1 2 . 9 5}$
\square SONY UHF TUNER-TRANS. ISTOR TYPE exact replace
ment, complete w/knobs..... $\mathbf{\$ 3 5}$ 4- Ni AIIGNMENT TOOLSm
sortment $\boldsymbol{a} 1$.
$\square \frac{4}{4 V}=\pi V^{2}$ allgnment tools For color 11 199

ASTATIC PICKUP MODEL 700-89T Con-
tains 89 T ceramic cartridge LIST
PRICE $\$ 17.00$
\qquad $20{ }^{-}$DIPPED MYLAA CAPACITORS . $01-11$
200^{-1} - DIPPED MYLLAR CAPACITORS . $033-11$
 ${ }^{15-D I P D P E D}$ MYLAR CAPACTORS

 RCA EyPe
$8 \rightarrow$ PRIMTO CIRCUIT IF TRAMSOORMERS : STEREO TONE ARMS Mot popuiar type-
turn over Cenrridge 4-50' HANKS HOOK-UP WIRE assorted ? 1

 Tube avod number transForm Sub-min * 1

 Spepaia buy

- SHANNON MYLAR RECORDING TAPE

Ken Fransen is using his electronics training where it really counts.

Helping to save lives in the U.S. Coast Guard.

It's up to Ken to keep sophisticated electronics communications equipment in top condition.

He's part of our lifesaving team. We count on Ken and need more people like him.

You may or may not have electronics training. If, like Ken, you have training, we'll put you to work fast, on a rewarding job with responsibility and challenges. If you don't have training, we'll train you.

Say your experience goes no further than building a crystal radio set. If you have an aptitude for electronics and qualify, we'll guarantee you 25 to 38 weeks of school and turn you into a seasoned professional who'll be able to troubleshoot the most complex electronics equipment. You'll study everything from theory and principle to practical application.

Those of you who already know your way around electronics systems may qualify for our advanced promotion program. After only ten weeks, you'll be promoted immediately to a higher pay grade (up to 2nd class petty officer with pay of over $\$ 400$ a month, plus food, housing and medical care). And you may qualify for even more advanced training.

Either way, your job as a Coast

Guard electronics technician will give you a broad range of experience. Using the most modern diagnostic tools, you'll maintain, repair and calibrate the latest electronics equipment, including LORAN transceivers, computer controlled transmitters, solid state equipment and AM, FM and SSB transceivers.

You might even qualify to help design, test and evaluate new equipment or prototype models in our research laboratories, or work on cesium and rubidium atomic clocks.

You'll be doing plenty for yourself, too. The training alone is worth thousands of dollars, and the skills you learn can lead to valuable, sought-after jobs in both the Coast Guard and civilian life.

What's more, the Coast Guard offers you a combination of pay and benefits most private companies can't match. (For more about our package of benefits, read the attached card.)

Find out more about a rewarding career in electronics. Mail us the card today.

Help others/Help yourself. Join the lifesavers. The Coast Guard.

IC
 PRICES SLASHED

FACTORY FIRSTS

Only quality parts are avallnot sell retested, rebranded or other reject parts.

DIGITAL TTL

LINEAR INTEGRATED CIRCUITS

NE555V MiniDIP . $\$ 1.00$ 723C DIP $\$ 1.15$

 NE565A DIP …..... $\$ 3.57$ 741C MiniDIP 60 NE567V MiniDIP.$\$ 3.57$ 747C DIP $\ldots \ldots . . . \$ 1.10$ 709C MiniDIP44, Quantity Discounts
GENERAL PURPOSE SILICON TRANSISTORS

2N2638 PNP..2010/\$1.65100/\$15.00 2N3638A PNP. 22 10/\$1.80 100/\$16.50 2N3641 NPN. 23 10/\$2.00 100/\$17.50 2N3643 NPN.. 23 10/\$2.00 100/\$17.50 $2 N 5133$ NPN.. 18 10/\$1.60 100/\$14.50 2N5134 NPN.. 18 10/\$1.60 100/\$14.50 2N5137 NPN.. 18 10/\$1.60 100/\$14.50 2N5138 NPN.. 18 10/\$1.60 100/\$14.50 $2 N 5139$ NPN. $1810 / 101.60100 / \$ 14.50$
$2 N 3055$ NPN. $8110 \$ 90100 / \$ 86.25$

1 AMP SILICON RECTIFIERS

IN4001 50PIV. $10 / \$ 1100 / \$ 7$ IM $\$ 60$ 1N4002 100PIV. 9/\$1100/\$8 1M/\$70 IN4003 200PIV. 8/\$1100/\$101M/\$85 1 N4004 400PIV. $7 / \$ 1100 / \$ 111 \mathrm{M} / \$ 95$ IN4005 600PIV. $7 / \$ 1100 / \$ 121$ M/\$105 1 N4006 800PIV. 6/\$1 100/ $131 \mathrm{M} / \$ 115$ N40071000PIV. $5 / \$ 1100 / \$ 141 \mathrm{M} / \$ 120$ SILICON SIGNAL DIODES
N4148 1N914equiv/12/\$1100/\$71M/\$65

ELECTROLYTIC CAPACITORS

Values from 1 ufd through 2200 ufd. Competitive prices listed in latest flyer

MOLEX IC SOCKET PINS

100/\$1.00 200/\$1.80 300/\$2.60 500/\$4.20 700/\$5.80 1000/\$8.20 ea addn 1000/\$7.50 DISPLAY DEVICES
 $\$ 3.75$
3/\$17.50
7 SEGMENT LED (MAN-1 TYPE) $\$ 3.50$ DISPLAY KIT (LED $+7447+7475+7490+$ RESISTORS) $\$ 6.50$ 3/\$18
$1 / 4 \& 1 / 2$ WATT 10% RESISTORS $1 / 4 \mathrm{~W} 5 \& 30 / \$ 1.20,100 / \$ 3.00,500 / \$ 13.75 \mathrm{as}$ low as 1.7 \& ea in quantity-see catalog 1/2W 4\& 30/90\&, 100/\$2.50, 500/\$11.25 as low as 14 ea in quantity-see catalog
COD orders accepted for same day shipment.
Call 2186816674.
Free Catalog-Large Quantity Discounts-Orders
Less Than $\$ 10.00$ Add $25 \phi-O$ Others Postpaid
Less Than \$10.00 Add 25\$-Others Postpaid

DIGI-KEY price pacessiter BOX 126H THIEF RIVER FALLS, MN56701

CLASSIFIED COMMERCIAL RATE (for firms or individuals offering commercial products or services). $\$ 1.15$ per word . . . minimum 10 words
NONCOMMERCIAL RATE (for individuals who want to buy or sell personal items) 70c per word . . . no minimum

FIRST WORD and NAME set in bold caps at no extra charge. Additional bold face at $10 \$$ per word Payment must accompany all ads except those placed by accredited advertising agencies. 10% discount on 12 consecutive insertions, if paid in advance. Misleading or objectionable ads not accepted. Copy for April must reach us before January 31.

WANTED

"CASH" paid for unused teletype parts and assemblies. "PHILMAR", Box 96, Morrisonville N.Y. 12962 518-561-3479

QUICK cash ... for electronic equipment components, unused tubes. Send list now! BARRY, 512 Broadway, New York, N.Y. 10012, 212 Walker 5-7000

PLANS \& KITS

ELECTRONIC organ kits, keyboards and many components. Independent and divider tone generators. All diode keying. IC circuitry. Build any type or size organ desired. Supplement your Artisan Organ. $25 \$$ for catalog. DEVTRONIX ORGAN PRODUCTS, Dept. B, 5872 Amapola Dr., San Jose, Calif. 95129
FREE catalog. Most unusual electronic kits available. Music accessories, surf, wind synthesizers, wind chimes, many others.
PAIA Electronics, Box B14359, Oklahoma City, Okla. 73114.
FUN kits novel, entertaining, educational. Build electronic touch switch, audio alarm, digital clock, Touch-Tone beeper, others. Send for free flyer. ADVENT ELECTRONICS, Dept. RE, P.O. Box 252, Lafayette Hill, Pa. 19444.
BUILD your own telephone answering service. Detailed plans $\$ 3.90$. TONSCOPE-C, 400 Third Ave., Satellite Beach, Fla. 32937
WALL-SIZED TV ... Build a TV projector for under $\$ 15.00$. Free details: MACROCOMA, Box-FAE, Washington Crossing, Pa. 18977
MUSIC synthesizer printed circuit boards and kits. Free information. UNDERWATER LABORATORIES, Box 25066, Northgate Station, Seattle, Wash. 98125

ELECTRONIC ENGINEERING

\& INSTRUCTION

TV tuner repairs-Complete course details, 12 repair tricks. Many plans. Two lessons, all for \$1 Refundable, FRANK BOCEK, Box 3236 (Enterprise), Redding, Calif. 96001
ELECTRONICS training. College level Com munications Electronics. FCC license. Broad cast Engineering. Satellite Communications Home Study. Free brochure
GTI, 5540 Hollywood Bv., Hollywood, Calif 90028.

CALCULATOR owners: Use your $+-x \div$ cal culator to compute square roots, cube roots, $\sin (x), \cos (x), \tan (x), \arcsin (x), \arccos (x)$ $\arctan (x)$, logarithms, exponentials, and more! Quickly, accurately, easily! Send today for the improved and expanded edition of the first and best calculator manual - sold throughout the world only $\$ 2.00$. Unconditional money back guarantee - and last service
MALLMANN OPTICS AND ELECTRONICS, Dept. - 4B, 836 South 113, West Allis, Wisc 53214

BUSINESS OPPORTUNITIES

START small, highly profltable electronic production in your basement. Investment, knowl edge unnecessary. Postcard brings facts BARTA-AB, Box 248 , Walnut Creek, Calif. 94597 BUILD your own speaker systems. Lowest wholesale prices on famous brands. Write for 176 page catalog. McGEE RADIO COMPANY, 1901 McGee Street, Kansas City, Missouri, 64108

Independent News Company, Inc. Is pleased to announce a Retail Display Plan available to all retailers interested in earning a display aliowance on Radio-Electronics magazine and who purchase the magazines from suppliers other than Independent News Co., Inc., or the publisher

To obtain details and a copy of the formal contract please write to Director, Retail Sales Division, Independent News Co., Inc., 75 Rockefeller Plaza, New York, N.Y. 10019. Under the display plan in consideration of your acceptance and fulfillment of the terms of formal contract to be sent to you upon your request you will receive a display allowance of 10% of the cover price per copy sold by you. This plan will become effective with all issues of Radio Electronics delivered to you subsequent to the date your written acceptance of the formal Independent News Co., Inc. Retail Agreement is received and accepted by our Company

INTERNATIONAL ELECTRONICS UNLIMITED

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} \& \multicolumn{2}{|l|}{T'TL} \& \& \\
\hline 7400 \& S 25 \& 7446 \& \$1. 45 \& 24121 \& 5.65 \\
\hline 7401 \& 25 \& 7447 \& 1.45 \& 71122 \& . 55 \\
\hline 7402 \& 25 \& \({ }^{7448}\) \& 1.50 \& 74123 \& 115 \\
\hline 7103 \& 25 \& 7450 \& . 29 \& 74126 \& +.95 \\
\hline 7104
7405 \& \({ }_{27}^{29}\) \& \({ }_{7}^{7451}\) \& . 32 \& 14145
71950 \& 1.25 \\
\hline 7506 \& 55 \& 7454 \& 45 \& 74151 \& 1,05 \\
\hline 7107 \& 53 \& 7455 \& 32 \& 74153 \& 145 \\
\hline 7408 \& 29 \& 7460 \& \({ }^{30}\) \& 71154 \& \({ }^{175}\) \\
\hline 7409 \& 29 \& 7461 \& 30 \& 74155 \& 135 \\
\hline 7410 \& 25 \& 7464 \& 45 \& 74456 \& 1.50 \\
\hline 7411 \& 35 \& 7465 \& 45 \& 74157 \& 150
+155 \\
\hline 7413 \& 95 \& 7470 \& 50 \& 74161 \& 1.65 \\
\hline 7415 \& . 50 \& 7472 \& 45 \& 74163 \& 180 \\
\hline 7416
7417 \& .50
.0 \& \begin{tabular}{l}
1473 \\
7774 \\
\hline
\end{tabular} \& 55
55 \& 74164
74165 \& \({ }_{2}^{2.95}\) \\
\hline \({ }_{1420}\) \& 25 \& 7475 \& \({ }_{95}\) \& 74166 \& \({ }^{1} 1.95\) \\
\hline 7421 \& 32 \& 7476 \& 55 \& 74173 \& 1.95 \\
\hline 7422 \& 32 \& 7478 \& . 89 \& 74175 \& 1.95 \\
\hline 1423 \& 37 \& 7483 \& 1.25 \& 74176 \& . 95 \\
\hline 7425 \& 39 \& 7485 \& 1.70 \& 74171 \& . 95 \\
\hline \({ }_{7426}\) \& 35 \& 7186 \& 55 \& 74180 \& 1.15 \\
\hline 7427
7430 \& \& 7489
7990 \& 3.25
1.25 \& 74181
74182 \& 4.25
1.10 \\
\hline 7432 \& 30 \& 7491 \& 1.40 \& 74190 \& \\
\hline 7437

7338 \& 50
55 \& 7492
7493 \& 1.05 \& 74192
7493 \& 165
165

\hline 7440 \& . 25 \& 7494 \& 1.10 \& 71194 \& 1.65

\hline 7441 \& 1.25 \& 7.95 \& 1.05 \& 74195 \& +.15

\hline 7442 \& 1.15 \& 7496 \& 1.05 \& 74196 \& 1.35

\hline 7443 \& 1.25 \& ${ }_{7100}$ \& 1.65 \& 74197 \& 1.15

\hline 1444
7445 \& 1.30 \& 74105
74107 \& 55
.55 \& ${ }_{74199}$ \& 2.50

\hline \multicolumn{6}{|l|}{Low Power TTL}

\hline 7at00 \& 540 \& 74L42 \& \$1.75 \& 74485 \& \$1.25

\hline 74102 \& 40 \& 74.45 \& 1.45 \& ${ }^{74486}$ \& . 95

\hline 74 L03 \& 40 \& 74.51 \& ${ }^{40}$ \& 74.90 \& 1.75

\hline ${ }^{71} 404$ \& 40 \& 34.71 \& 60 \& 74L91 \& 1.50

\hline ${ }^{74 L 06}$ \& 40 \& 74.722 \& ${ }_{80}^{60}$ \& 744.93 \& 175

\hline 74L10 \& 40 \& 74.73 \& ${ }^{80}$ \& ${ }^{7} 74.95$ \& 175

\hline 34120 \& 40 \& 74.74 \& 80 \& 741164 \& 2.95

\hline 74.30 \& 40 \& 74.78 \& 80 \& \&

\hline \multicolumn{6}{|l|}{8000 Series ITL}

\hline 8054 \& S 45 \& 8123 \& 5175 \& 8570 \& \$2.95

\hline 8060 \& 30 \& 8182 \& 1.75 \& 8600 \& 115

\hline 8091 \& 69 \& 8214 \& 195 \& 8810 \& 95

\hline 8092 \& 69 \& ${ }^{8230}$ \& 2.95 \& 8812 \& 1.25

\hline ${ }^{8093}$ \& 69 \& 8280 \& . 95 \& 8822 \& 2.95

\hline 8094 \& 69 \& ${ }^{82888}$ \& 1.05 \& 8830 \& . 69

\hline 8122 \& 1.05 \& 8520 \& 1.45 \& 8831 \& 295

\hline \multicolumn{6}{|l|}{| ALL DIP PKGS. |
| :--- |
| Specify spec. sheets required with order. Add $\$.50$ per upec sheet for items less than \$1.00 a a. |}

\hline
\end{tabular}

Linear			
$\begin{aligned} & \text { LM } 300 \\ & \text { LM } 301 \end{aligned}$	Pos \vee Reg luper 723)		\$ 95 ea.
	Hi pertormance AMPL	to- 5 or MINI-DIP	
$\begin{aligned} & \text { LM 302 } \\ & \text { LM } 304 \\ & \text { LM } 305 \end{aligned}$	Voltage Follower	T0. 5	95 ea
	Negative Voltage Regulator	To. 5	1.25 ea
	Positive Vol tage Resulator	to. 5	1.25 es
	Op AMP (super 74)	TO.5 \% MIN.DIP	45 ®.
LM 308	Micro Power Op Amp	T0.5 or	
LM 309 H		MINI.DIP	1.25
	5 V Regulator	To. 5	1.25ea
$\begin{aligned} & \text { LM } 3 \text { 3096 } \\ & \text { LM } 311 \end{aligned}$	5 V 1 A Ragulator	To. ${ }_{\text {To }}$	1.95 ea 1.45 ea 1
	Voltage Foillower Oo Amp	${ }_{T}^{10.5}$	1.45 ea.
		M1	
LM 319	Hi Speed Dual Comparator		
LM 320	5.2 V Negative Regulator	ro. 3	1.95 ta
LM 3220	12 V Negative Regulator	103	1.95 ea.
	15 V Negative Regalator	10. 3	1.95 ea.
LM 340T	Pnsitive Voltage Regulator ($6 \mathrm{~V} . \mathrm{BV}, 15 \mathrm{~V}$ or 24 V)	то-220	2.25 *.
LM 370	AGC/Squelch AMPL	To. 5 or DIP	29ee
	AF.IF Strip detector		
LM 372	AM/FM/SSB Strip		360 ea
LM 376	Pos. Vott Regulstor	MINI DIP	${ }^{6} 65$ ea.
LM 380	2 Watt Audio Regulator	DIP	1.75 ea.
LM 388	Low Noise Dual fe Amp	$01 p$	2.25 ea.
	Precsision Votrace Regulator	DIP	95 ea.
$\begin{gathered} \operatorname{LM} 550 \\ \operatorname{LM} 709 \end{gathered}$	Operational AMPL	ro 5 or DIP	39 ea.
LM 709	Dual Differentital Comparatox		39
LM 723	Votrage Rexulator	DIP	75 ea.
	${ }_{\text {Dol }}^{\text {Dual }}$ HiP Perifor mance	DIP	1.25 ea.
741	Comp Op AMP	ro. 5 or	
		MINI.DIP	45 ea.
	Dual 741 Op AMP	T0.5 or DIP	958 ea.
$\begin{aligned} & \text { LM } 3900 \\ & \text { LM } 3905 \end{aligned}$	Ouad Amplitier	DIP	50 ea
	Precision Timer	MINI.DIP	75 \&e.
LM 96601	Revirgerabie One Shot	DIP	95 ea
	Dual Perioheral Dr	MtNIDIP	49 ea.
LM 75452LM 75453	Dual Petipheral Driver	MINIDIP	49 ea.
	(LM 351$)$ Dual Peripheral Driver	MINI-O	
Specity TO-5, DIP or MINI-DIP Package Specify Spec Sheet Required with order. Add S 50 per sper sheet for items less than $\$ 1.00$ es.			

\section*{Phase Locked Loops
 | NE 560 | Phase Locked Loop | DIP | \$295es. |
| :---: | :---: | :---: | :---: |
| NE 561 | Ptuse Locked Loop | DIP | 2.95 ea. |
| NE 562 | Phase Locked Loop | DIP | 2.950 d |
| NE 565 | Phase Locked Loop | DIP | 2.95 a |
| NE 566 | Function Generstor | MINI DIP OR TO5 | 2.95 ea |
| NE 567 | Tone Decoder | MINI DIP OR TO-5 | 2,95 ex. |

FEBRUARY SPECIALS

$\begin{array}{ll}\text { MM 74C00 } & \text { Quad two input NAND gate } \\ \text { SN } 74193 & \text { Up/down Brmary Counter }\end{array}$
MM $1101 \quad 256$ Bit static random access $\$.60 \mathrm{ea}$
$\quad 1.39 \mathrm{ea}$
2.00 ea.

Similar to LM 309 K except input
Similar to LM 309 K except input
voltage limited to $20 \mathrm{~V}-$ no curtent limiting - while they last ${ }^{\text {no }}$ current limiting- while they last
Hi
Hitormance
amplutifer DIP molifier Dip amplifier
\qquad
infra red (invisablel
ind
nitra red hinvisablel
difl dome TO 18
ME4
MV5020

m

100 for $\$ 15.95$
10 for $\$ 3.95$
100 for $\$ 19.95$

MM5313 CLOCK CHIP WITH LED's
28 pin any readout
6 digit IPS $B C D$ with
6 drgit IPS BCD with
Complete with Dato

FLAT PACK GRAB BAG

Milizary formp. Sp
Elextrically good

4000 Series - RCA Equivalent

Memories

Digital clock . . . on a Chip

ON ORDERS OVER \$25.00 DEDUCT 10\%

Satisfaction guaranteed. All items except as noted are fully tested. Minimum order $\$ 5.00$ prepaid in U.S. and Canada. Calif. residents add sales tax. Orders filled within three days from receipt.

INTERNATIONAL ELECTRONICS UNLIMITED P.O. BOX 1708R

Monterey, Calif. 93940

MAGNETIC DIGITAL COUNTER(12 1018-VDC)

TUBES

SAVE money on parts and transmittingreceiving tubes, foreign-domestic. Send 25c for Giant Catalog. Refunded first order UNITED RADIO COMPANY, 56-R Ferry Street, Newark, N.J. 07105

RECEIVING \& industrial tubes, transistors. All brands-biggest discounts. Technicians, hobbyists, experimenters-request free giant catalog and save! ZALYTRON, 469 Jericho Turnpike, Mineola, N.Y. 11501

EDUCATION \& INSTRUCTION

DEGREE Program in Electronics Engineering. Our 27th Year! Free literature. Cook's Institute, Dept. 14, Box 10634, Jackson, Miss. 39209.
SHORTCUTS to success! Highly effective, profitable short courses. (75 choices). Study at home. Diploma awarded. Our 27th year. Free literature. CIEE-E, Box 10634, Jackson, Miss 39209

"GROUNDED" QUTLET TESTER

πNew GT-20 Tester tells if your AC Outlets are safely grounded or prop erly wired. Simply plug it in $\&$ read coded neons. Ideal for home, shop, campers, electricians, maintenance men, etc. \$7.95 PREPAID. Two prong adapter $\$.75$.

$$
\square \square \begin{aligned}
& \text { BOX 1348-RE-FM } \\
& \text { Eawrence, Ma. } 01840
\end{aligned}
$$

MyMre

COMPUTER KEYBOARD W/ENCODER $\$ 35$

 Another shipment just received. Alpha-numerics keyboard excellent condition. Once again we expect early selout. Price of $\$ 35$ incudes prepaid ship ment in the US andJUNK KEYBOARDS as above, "as is" for parts $\$ 7.00$

COMPLETE MEMORY SYSTEM $\$ 150$

Measures $12 \times 7 \times 1$ inches. Utilizes TTL IC's. 10240 memory cores. 9 installed sense amps, addressed as 1024 locations. I/O lines include 9 data-in, 9 data-out, 10 address-in, powering status and control. Only 40 systems on hand. Schematics included.
\#DCU \$150 pp

AUTOMOBILE REVERB $\$ 7.00$

Brand new fully assembled, ready to install in your car to give 3 rd dimension concert hall effect. Complete with instructions, rear seat speaker, grill, wires, plugs
\#05 \$7.00

8 TRACK STEREO TAPE DECK $\$ 14.00$

With built-in stereo pre-amp, 115 volt drive motor, channel indicator lamps. Unused, original boxed, less cabinet. Customize your stereo music center with one of these tape decks.
\#46 \$14.00
Please add postage for above. JOHN MESHNA JR.
PO Box 62, E. LYNN, MASS. 01904
Circle 86 on reader service card

FOR SALE

LOGIC probes from \$9.95. Free catalog ELECTRO INDUSTRIES, 4201 Irving Park. Chicago, III. 60641
BURGLAR alarm system - Do it yourself. Installed in minutes. Free literature. EMRAD CORPORATION, P.O. Box 1341 Kokomo, Ind 46901
SEMICONDUCTOR and parts catalog. J. \& J. ELECTRONICS, Box 1437, Winnipeg, Manitoba, Canada
NAME brand digital test equipment, discount prices. Free catalog and price list. SALEN ELECTRONICS, Box 82 , Skokie, III. 60076
CONVERT any television to sensitive big-screen oscilloscope. Only minor changes required. No electronic experience necessary. Illustrated plans $\$ 2.00$. RELCO-A25, Box 10563, Houston, Tex. 77018
TWENTY disc, or 10 bar magnets. $\$ 1.00$ MAGNETS, Box $192-E$, Randallstown, Md 21133

FREE catalog lists resistors, tubes, transistors, rectifiers, condensors, tools, tuners, etc. etc. HYTRON HUDSON, Dept. RE 2818 Kennedy Blvd., Union City, N.J. 07087.
GIANT 126 page Canadian surplus catalog. $\$ 1.00$ ETCO ELECTRONICS, Dept. RE, Box 741 , Montreat, Canada.
NEW FM deviation meters $\$ 75.00$. Free information. Write ECM, 412C N. Weinbach, Evansville, Indiana 47711
DIGITAL electronics! Complete schematics, parts lists, theories-Discrete Component Digital Clock, $\$ 3.00$. Increase technical competence, hobby skills - Complete course in Digital Electonics is highly effective $\$ 10.00$. Free literature OYNASIGN. Box 60R2. Waviand. Mass. 01778
LOW noise resistors - $1 / 4 \mathrm{~W}, 5 \%$, carbon film for 3.5 c each. Fifty of one value for $\$ 1.25$. All 5% values from 10 to 3.3 Meg ohms in stock. Specifications upon request. 75 c postage and handling charge per order. Deduct 10% on orders over \$50. COMPONENTS CENTER, P.O. BOX 134, N.Y., N.Y. 10038

SLA-3 7 segment LED readouts .77" numbers. $45 \mathrm{Ma} / \mathrm{seg}$. $\$ 7.95$

MINIATURE TRIM POTS $5 \mathrm{~K}, 10 \mathrm{~K}, 20 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}$, $\$.75$

MULTI-TURN TRIM POTS Similar to Bourns 3010 style $3 / 16^{\prime \prime} \times 5 / 8^{\prime \prime} \times 11 / 4$
$50,100,500,2000,5000$
10,000 and 20,000 ohms.
$\$ 1.50$ ea.
$3 / \$ 4.00$
PRINTED CIRCUIT BOARD
$41 / 2^{\prime \prime} \times 61 / 2^{\prime \prime}$ double sided fiber-
glass board, $1 / 16^{\prime \prime}$ thick, unetched $\quad \$.60$ ea. $5 / \$ 2.50$

NIXIE TUBES
 Similar to Raytheon 8650 tubes, with socket \& data sheet $\$ 2.25$ $3 / \$ 6.00$

TIS 73 N FET
2N4891 UJT

VERIPAX PC BOARD

 This board is a $1 / 16^{\prime \prime}$ single sided paper epoxy board, $41 / 2^{\prime \prime} \times 61 / 2^{\prime \prime}$ (standard verETCHED which will hold up to 21 single 14 pin IC's or 8 16 or LSIDIP IC's with bus ses for power supply con nections. Is also etched for22 pin connector. $\$ 4.35$
FLV 100 visible LED
ME-4 IR LED
MV5026 Vis. LED MT-2 PHOTO TRANS MCT-2 OPTO-ISOL MCD-2 OPTO-ISOL Green GAP OSL-16 Red GAP OSL-3 LED. Hiintensity VIS. Red
with reflector
MCA 2.30 photo dariington
relay relay
14 PIN DIP SOCKETS $\quad \$ \$ 1.00$

Silicen Power \begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{7}{|c|}{ Silicon Power Rectifiers }

PRV	$1 A$	$3 A$	$12 A$	$50 A$

\end{tabular}

100	.06	.11	.30	.90
200	.07	.16	.35	1.25

400	.09	.20	.50	1.50
600	11	.25	.70	1.80

600	.11	.25	.70	1.80
800	.15	.35	.90	2.30

000	.20	.45	1.10	2.75

Terms: FOB Cambridge, Mass. Send check or Money Order. Include Postage Min imum Order $\$ 3.00$

FREE catalog. Tremendous electronic bargains COMPUKITS, Box 4192X, Mountain View, Calif 94040
RADIO \& TV tubes 36c each. One year guaranteed. Plus many unusual electronic bargains Free catalog. CORNELL, 4217-E University, San Diego, Calif. 92105
CANADIAN'S free catalog LED's, IC's, transistors, SCR's diodes, parts. CORONET ELECTRONICS, 649A Notre Dame West, Montreal 101, Que., Canada
EMPLOYMENT information - Electronic technicians - How to earn $\$ 15,000-20,000$ yearly. Not field service. Not overseas. Work in U.S.A. Details $\$ 2.00$. WENDEL L. DANIELS CONTRACT ENGINEERING, 8450 Anthony Wayne Ave., Cincinnati, Ohio 45216
NEWI Record, dub, edit, mix, fade, monitor Eliminate "jungles" of tangled wires with Dubie Tape Aid control for 1 to 3 tape decks. DUBIE
TAPE AID CORP., Dept. D, 2305 N. Penn., Ok-
lahoma City, Okla 73107 (405) 524-858
FREE catalog. Electronic parts bargains. J.K PRODUCTS, P.O. Box 527R, Norris, Tenn. 37828 FLASHTUBES, capacitors for automotive timing light replacement. Catalog. Kohler Electronic, Box 57, Elk, Calif. 95432
FREE kit catalog: Scramblers, tone encoders and decoders, alarms, sounders, automatic telephone recorder phone patch, ic kits and more. KRYSTAL KITS, 2202 S.E. 14th, Bentonville, Ark. 72712
CINCH connectors $22+22$ contacts. 156 spacing $\$ 1.95$ plus 25 c postage. WEST ASSOC 95 Steuben Blvd., Lake Ronkonkoma, N.Y. 11779 MANUALS for Govt. surplus radios, test sets, scopes. List $50 \$$ (coin). BOOKS, 7218 Roanne Drive, Washington, D.C. 20021
JAPANESE transistors, wholesale prices, free catalog. WEST PACIFIC ELECTRONICS, Box 25837, W. Los Angeles, Calif. 90025
FACTORY outlet - stereo - quadraphonic multiplex auto decks, radios and accessories $\$ 15.00$ up - $\$ 1.00$ for dealer lists. BIDCO CON. SUMER ELECTRONICS, 565 East McMurray. McMurray, Pa. 15317
FREE catalog. IC's, PUT's, transducers, ther mocouples, LED's, transistors, circuit boards, parts. CHANEY'S, Box 15431, Lakewood, Colo. 80215.

SEMICONDUCTORS, components, unusual items, discount prices. Catalog 204. SEABOARD INTERNATIONAL ELECTRONICS, BOX 906 Clute, Tex. 77531
EXPERIMENTERS! Projects and theory in digi tal computers, communication, microwave many more. Send for free listing EXPERIMENTER'S LIBRARY, Box 1182 Lafayette, Ind. 47901
LOUDSPEAKERS - BOSE 901 replacements. $\$ 7.98$ postpaid. Quantity discounts. Money back guarantee AURATONE, Box 580-1B, Del Mar Calif. 92014

MOVABLE CPOBB HATCH

FOR cOLOR

Technical Excellence in Electronics.

On our small. frlendly campus the embhasis is on Living as well

as Learning. Extra-curricular social activilies. student clubs. a
student operated radio station. student government. new dormi-
tory tory atid a full sports program hely provide a world of your oun

VALPARAISO TECHNICAL INSTITUTE

LINEARS	7400 DIP	W
- 4545		
40		
${ }_{5}^{1.050140}$		
${ }^{\text {Oon Lu }}$		TTL Special 270
		7037 Precision Waveform Generator/
		Voltage Controlled Oscillator
		Sine, Square, Triangle, Outputs. Wide Ere-
	74488	Evect rialys siningr to and $\sim \sim$ in compatib
5005	$\begin{aligned} & 74154 \\ & 74255 \\ & 7460 \end{aligned}$	
dicu		Special 812:
- 28 Leaded Dit		
Chain calculations		
		and capacitor external timing components may be added to provide delay from
		proximately 1 ms per microfarad. Parts are brand new and are branded Signetics and marked
	${ }_{7}^{7492}$	
felt		Triple 3-input NAND Gate Pin interchangeablewith SN 7410 DIP branded Signetics and marked"949." Data sheet supplied.
		(tach.
\cdots True Credit Balance sign ${ }^{\text {Output }}$		
		U-Test Special 709
		To-s unmarked 709 op amps--these are test fall out and our sampling showed that most units are okay at less than spec max. supply vol-
(veefunable vit		tage. Satisfaction guaranteed. Data sheet supplied.
$\begin{aligned} & \text { se of chip) } \\ & \text { lete with data.. } \$ 9 . \end{aligned}$		
CD-2 COUNTER KIT		
		Super Digital Special 26
	SPECIAL	
CMOS		
Eta011		
SEND FOR		
		arked
	$\begin{aligned} & \text { Carmichael. CA } \\ & 95608 \\ & \text { (916) } 966-2111 \end{aligned}$	RTL Epoxy TO-5, Fairchild

Circle 88 on reader service card

RG-8 A/U COAXIAL CABLE 52 ohm. Two (2) PL-259 Coaxial Connectors included Used, Good Condition: 68 Foot Length $\$ 5.50-50$ Foot Length $\$ 4.50-25$ Foot Length $\$ 2.50$

RG-54 A/U COAXIAL CABLE
58 ohm .250 O.D. Polyethylene. Unused 370 Foot Roll $\$ 10.00$ - 185 Foot Rall $\$ 6.00$
Prices are F.O.B., Lima, Ohio. Order Dept. RE

DIGITAL:THEORY,DESIGN
LOGIC
NEWSLETTER ${ }^{\odot}$
SAMPLE COPY $\$ 1.00$
LOGIC NEWSLETTER POB 252
WALDWICKN.J. 07463
 ELECTRONIC FACTORY

Investment unnecessary, knowledge not required, sales handled by professionals. Postcard will do Barta-BB, Box 248 Walnut Creek, CA 94597.

Projen a giant $5 \times 6^{\circ}$ picture B\&W/Color. Kit contains detailed plans, Inst., and Precision Lens system. Only \$12.95 ppd. or write for Free illustrated details. The Macrocoma Co., Dept. FB Washington Crossing, PA 18977

A NEW INSTRUMENT TO USE WITH YOUR SCOPE
 WHY PAY MORE?
BOX 14, LESCO ELECTRONICS, SKOKIE, ILL. 60076

Alco Electronics Products. Inc.
ATV Research Corp. 102
Barta. 110
B \& F Enterprises 109.111
Babylon Electronics 108
Brigar Electronics 110
Command Productions 104
Delta Electronics 104
84 Digi-Key 102
Fair Radio Sales 110
91 Gregory Electronics Corr 110
85 Internationd Electronics Unlimited 103
l.akeside Industries 110
Lesco Electronics 110
Logic Newsletter 110
Macrocoma 110
Meshna Electronics. John Jr 104
Photolume Corp. 106
Polypaks 105.107
Solid State Sales 106
Surplus Center 104
Valparaiso Technical Institute 106Yeats Appliance Doily Sales Co.

BRIGAR (e) electronics

10 Alice Street, Binghamton, New York 13904
Phone 607-723-3111
GENERAL PURPOSE RELAY
Potter \& Brumfield type khu
 COIL: 24 VDC - 650 OHMS. CONTACTS: 4 PDT @ 3 AMPS 30 VDC OR 120 VAC RESISTIVE.

Small, rugged dC relay with clear POLYCARBONATE DUST COVER. CONTACT Gold flashed silver. Mounts with STUD OR IN A SOCKET. SIZE: $15 / 16$ HIGH $\times 1$ WIDE $\times 13 / 16$ DEEP.

$$
\text { PRICE } \$ 1.45 \mathrm{EA}
$$

SPRAGUE HYPASS FILTER
PART \#48P16-.5 UF @ 600 VDC - SIzE: $1^{\prime \prime}$ DIA $21 / 4^{\prime \prime}$ LONG.

> PRICE \$1.50 EA

Female screw terminals. Angle BRACKET FOR MOUNTING. USED TO PREVENT ELECTRICAL INTERFERENCE.

SEND For free Flyers \& catalogs

GREGORY ELECTRONICS Reconditioned \& Used FM 2-WAY RADIO SAVINGS Send for New Catalog

now available New 1974 Catalog

 FREE... FM Used Equipment- GENERAL-ELECTRIC - MOTROLA • R.C.A. High Band . . . Low Band . . . UHF Equipment Checked on Our Benches. HEADQUARTERS FOR QUALITYCERTIFIED USED 2-WAY MOBILE COMMUNICATIONS EQUIPMENT

GREGORY ELECTRONICS CORP. 251 Rt. 46, Saddle Brook, N. J: 07662 Phone: (201) 489-9000

LIVE IN THE WORLD OF TOMORROW...TODAY!

A BETTER LIFE STARTS HERE

3-CHANNEL COLOR ORGAN KIT

Easy to build low-cost kit needs no technical knowledge. Completed unit has 3 bands of audio frequencies to modulate 3 independent strings of colored lamps (i.e. "lows"'reds, "middes"' greens, "highs"'blues. Just connect hi-fi radio, power lamp etc. \& plug ea. lamp string into own channel (max. 300w ea.). Kit features 3 neon indicators, color intensity controls, controlled individ SCR circuits; isolation trans. former; custom plastic housing; instr.
 KNOW YOUR ALPHA FROM THETA!
or greater relaxation, concentration, listen to your Alpha-Theta brainwaves. Ultra-sensitive electrode headband slips on/off in secondseliminates need for messy creams, etc. Atch'd to amplifier, filters brainwaves, signals beep for ea. Alpha or Theta wave passed. Monitoring button simulates Alpha sound audio \& - visual (L.E.D.) feedback. Reliable, easy. to-use unit--comparable to costlier models: Completely safe. Comprehen. instr. bklt. No. $1635 \mathrm{EH}(8 \times 3 \times 4$ ": 24 oz) . . $\$ 128.00 \mathrm{Ppd}$ LOW COST "Starter" Unit Stock No 1,809EH $\$ 49.95$ Ppd

130 EXPERIMENTS IN OPTICS

and photography! Optix Experiments Kit is a complete optical \& photography lab for 130 exciting experineents Lets you recreate the periscope telescope you recreate the periscope, telescope, microscope, kaleidoscope! . Build a
35 mm reflex camera with interchange 35 mm reflex camera with interchange able lens system! Make, develop pho
lographic film! Enjoy the fun and fas cographic film! Enjoy the fun and fascination of having your own optics $81 / 2^{\prime \prime} \times 11^{\prime \prime}$, clearly explains usage of this stimulating kit's 114 precision engineered components. 114 precision Stock No. 71,646EH\$22.50 Ppd.
(And our FREE CATALOG is packed with exciting and unusual ecological \& physical science items-plus 4,500 finds for fun, study or profit . . . for every member of the family.)

ELECTRONIC SLIDE RULE: $\$ 99.95$ Price breakthrough! Texas Instrument calculator easily does classic slide rule wk. w/split-sec. accuracy. 8 -digit \#S, 2-digit exponents, minus signs, overflows show in red Besides 4 std. functions, does $\mathbf{s q}$ roots squares, reciprocals, auto. conversion to scientific notation, mixed calc. Max. \& min. \#s. entific notation, mixed calc. Max. \& min. \#S.
Great for tchrs, students on the go $(9 \mathrm{oz})$. Incls long-life Ni-Cad rechargable batts. \& AC converter-charger.
(A) No. 78,011EH (6-1/4×3×1-1/4') $\$ 99.95$ Ppd.
(B) No. 78,014EH (ENGR'S DESK MOD.) $\$ 179.95$ Ppd.

Low price on 0.5 mW Laser (random mode); 0.9 mm beam dia. (at 10 M , 16 mm) belies its quality. New cold aluminum cathode tube for more life stability (hi beam: 9000 -hr tube life under normal cond.) Ready to plug in, turn on. Starts instantly. Safe, easy for holography, interfer metry, alignment. Metal case, 2.8×3.8 small beam divergence
Stock No. 79,020EH Stock No, $79,0.7 \mathrm{~mW}$ (SINGLE TEMOOMODE), 0.8 mm BEAM DIA. $\$ 88.50 \mathrm{Ppd}$.

SEE THROUGH WALLS, PARCELS!

Our exclusive hand-held metal detector is so responsive it will pick up a staple in a letter, and its sensitivity adjusts to big pipes \& cables! "See" through brickwork, concrete, timber, tiles-locate studs, trace wires, pipes, any ferrous and nonferrous metal safely. Avoid danger too -use this lightweight wonder to detect bombs in letters, parcels (non-invasive search)! Has very visible neon alarm, req. gv rect. batt. (not incl). Instrs.

Stock No. 1938EH
.$\$ 49.95$

COMPLETE \& MAIL WITH CHECK OR M.O. EDMUND SCIENTIFIC CO.
300 Edscorp Building, Barrington, N.I. 08007

PLEASE SEND \square GIANT FREE CATALOG "EM" MERCHANDISE TOTAL $\$$
ADD HANDLING CHARGE $\$ 1.00$ ON ORDERS
UNDER $\$ 5.00 ; 50 \notin$ ON ORDERS OVER $\$ 5.00$
1 enclose \square check
\square money order for $\$$
NAME

ADDRESS

CITY__ STATE_________ ZIP
TOTAL $\$$

city
Circle 77 on realer service cards

Our tests show that JERROLDS Super Vu-FinderaAnd Parabogs Outiperform All Others

- MORE GAIN \& FLATTER RESPONSE - RUGGED AND EASY TO INSTALL

The Timesaver!

Latest, all solid state version of the sensational signal circuit analyzing timesaver originated by Castle.
Invaluable for locating the break in the tuner and i.f. signal chain or analyzing age system defects in tube TV receivers . . . essential for speedy location of signal circuit defects in modular IC, solid state and hybrid TV receivers.

A NEW APPROACH to agc system analyzing!

Permits signal injection after the agc controlled stages to simplify testing for age defects.

- Works with any 40 MHz receiver . . . color or black and white . . . solid state, tube or hybrid
- High level, low impedance output furnishes signal usable at input of final i.f. stage.
- Special output circuit works equally well into first i.f. input of late model, link coupled systems and older, low "C" bandpass coupled systems.
- Antenna input and i.f. output electrically isolated; no "hot" chassis hazards.
- No need to disconnect supply leads from suspected tuner being tested. Substitutes the VHF funer and tests the UHF
- Tunes all 12 VHF channels, has preset (memory) fine tuning on all channels
- Higher overall gain than previous models with wide range gain reduction control of 60 db .
- Completely self contained and battery operated, uses popular batteries available everywhere. Simple battery replacement; battery compartment in rear of custom molded case.
- Reduced current consumption extends battery life to as much as double that of previous models. Bright LED indicator warns when unit is ON
- Use on the bench or in the home
anywhere.
- Comes complete with extension cables, batteries and instructions.

TV TUNER SUBBER Mark IV net \$45.95

Contact your distributor

Spoctioutiona	
semama	
Output:	
Tonotomeme	
	\%ent
$\begin{aligned} & \text { supply } \\ & 6 \text { waigh } \end{aligned}$,
, cararaver	

CASTLETVTUNER SERVICE, INC.
5715 N. Western Ave., Chicago, Illintis 60645 • Phone: (312)-561-6354
In Canada: Len Finkler Co., Ontario

[^0]: HIGH OUTPUT LEVEL: 46 dbmv (200.000 microvolts) on each of 7 VHF channels at 0.5% cross modulation: 45 dhmv (178.000 microvolts) on each of 5 IIIF channels at 0.5% cross modulation . enough to handle up to 48 taps without additional line amps.
 HIGH INPUT IEVEL: Allows use in strong signal areas. 20 dhmv (10.000 uv) on euch of 8 VHF channels, 22 dbmv (12.000 uv) on each of 5 UHF channels both at 0.5% cross modulation HIGH GAIN: 26 db on VHF, 23 db on UHF for use in most reception areas. LOW NOISE FIGURE: 3.6 db VHF 6.0 db UHF for perfect color fidelity
 PASSES MID \& SUPER BANDS ($108-174$ \& $216-300 \mathrm{MHZ}$) - compatible with any CATV system.
 LINE AMPLIFIER VOLTAGE to operate model L-213B or L-483B line amplifiers
 PLUS BUILT.IN FM TRAP, REGULATED POWER SUPPLY, IIGHTNING PROTECTION and more

[^1]: AMPEREX ELECTRONIC CORPORATION, OISTRIBUTOR ANO ENTERTAINMENT PRODUCTS OIVISION, HICKSVILLE, N. Y. 11802

[^2]: DIVISION OF ELECTRO-VOICE INC - A Gullion COMPANY
 In Canada: E-V of Canada, Ltd., Gananoque. Ontario

